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NOTATIONS AND DEFINITIONS 

R " :  n  d i m e n s i o n a l  v e c t o r  s p a c e  o f  r e a l  n u m b e r s .  

C: n dimensional vector space of complex numbers. 

a. A, A: scalar number (integer, real, or complex number) is represented by lower case, i.e., 

a. Vector with scalar numbers is represented by upper case, i.e., A. Matrix with scalar 

numbers is represented by upper case bold, i.e., A. 

r ( t ) :  r e p r e s e n t  c o n t i n u o u s  t i m e  s i g n a l ,  t  i s  a  r e a l  n u m b e r .  

r ( n ) :  r e p r e s e n t  d i s c r e t e  t i m e  s i g n a l .  L e t  t ^  b e  t h e  s a m p l i n g  i n t e r v a l  u s e d  t o  o b t a i n  

discrete time signal r(n) from continuous time signal r(t) . Then r(^n)=r(t=nt^^^ ) . n and 

^re integers. 

x ( t ) ,  x i n )  , X ( t ) , X  ( n ) , X(/), X ( n ) :  T i m e  d o m a i n  s c a l a r  s i g n a l s  a r e  r e p r e s e n t e d  b y  l o w e r  

case, i.e., x(^t) or x(n). Vector valued signals are represented by upper case, i.e., 

X (jt) or X («). Matrix valued signals are represented by bold upper case, i.e., 

X(/) o r  X ( n ) .  

X  ( t ) :  r e p r e s e n t  d i f f e r e n t i a l  o f  X  (r) with respect to t, i.e., X (r)- — { X  (r)). 
dt 

G(s), Giz), G(s), G{z)\ Transfer function with upper case letter represent single-input 

single-output function , i.e., G(s) or G{z) . Transfer function with upper case bold letter 

represent multi-input or multi-output transfer functions, i.e., G(s) orG(z). s=0+ j(0. 
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- o o < c i ) < o o ,  z = k e ^ ^  ,  - T t < Q < 7 :  . F o r  s t a b l e  t r a n t e r  f u n c t i o n s  a n d  0<cy<«».  

G ( s )  w i t h  s t a t e  s p a c e  m a t r i c e s  A,B,C,D is represented as: 

G { s )  =  C { s I - A y ' B + D  

X"(0=AX(f)+BW(r)  

y(0=CX(0+DW(f)  

where X(t) is a state variable vector, W(t) is input signal matrix to G(.s),and Y(t) is 

o u t p u t  s i g n a l  v e c t o r  o f  G ( s ) .  

: Complex valued functions which are analytic and bounded in the open right half plane. 

: Complex valued functions which are analytic and bounded on jca axis. 

RH^ : Subset of functions consisting of real-rational functions. 

RL̂  : Subset of consisting of real-rational functions. 

:H^ norm of F . jjF|L = sup{|F(5')|:Re(5')>0}=sup {|f (ya))|:£«>€r<?a/ number ]• 

where Re{ s) denotes the real part of complex number s, s=<5+jca , a is a real number. 

dis( R,RH^): Distance from Rs RL^ to subspace RH^ . 

||r^||; Hankel norm of R. fr^f ||= inf |/?-x| ; Re RL^. 
X e R H .  

|;c|; represent absolute value ofx. 

5 ̂ : represent dirac-delta function. 5^ = 
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Finite Energy Signal (FES): r ( t )  i s  c o n t i n u o u s  t i m e  f i n i t e  e n e r g y  s i g n a l  i f  

j r ( t ) r ' ( t ) d t  < 0 0 .  r ( n )  i s  d i s c r e t e  t i m e  f i n i t e  e n e r g y  s i g n a l  i f  / * " ( « )  <  < »  

Second norm of FES orl-norm: I f  r { t ) o r  r i r i )  i s  FES then second norm of r(t) or r(n) 

Zero mean wide-sense stationary signals: r { t )  i s  z e r o  m e a n  w i d e - s e n s e  s t a t i o n a r y  ( W S S )  

signal if £[/-(f)]=0 and the autocorrelation function 

£ [ r ( r = r , ) r ( r = f , ) ] = a c ^ ( r i  - t ^ )  =  a c ^ ( t = x , ) ,  i . e . ,  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  d e p e n d s  

only on the interval x,. r(n) is zero mean WSS signal if £[r(/2)]=0 and the autocorrelation 

function £[r(«=n,)r(n=«,)]= -n,) = ac^{n=xj, i.e., the autocorrelation function 

depends only on the interval x „. 

PSD: Power spectral density of e{t) is given by <I>„(yco) = Jac,^(r=x,)e"-""' dx,, 

-<x><(3i ,andPSDfor e(ji)is^ac^{n) e~^°", -7t<Q<K. 

Unity Variance Signal: Signal r(t) or rin) are unity variance if ac„{^ r = x,=0 )=1 or 

aCrri «='C„=0 )=1. 

SNR: Signal-to-noise ratio. If sQi) is the input signal and iv(n) is the noise then 

is defined as: ||r| 



www.manaraa.com

ix 

SNR = lOlogjo -ZTT^ • 

Zero mean WSS White Noise: r { t )  i s  c o n t i n u o u s  t i m e  z e r o  m e a n  V y 5 5  w h i t e  n o i s e  i f  

= 0 . oc„ it=z,)=0 for X, ^0, and ax:„ ( f = =  0 )  =  S ^ o  • Similarly, r(jn) is 

d i s c r ete time zero mean WSS white noise if £[r(rt)] = 0, ac^ («=)=0 for x ^ ^0, and 

ac^(n=x^ =0) = u". Where t)' is the variance of white noise. 

Uncorrelated Signals: s { n )  a n d  w { n )  a r e  u n c o r r e l a t e d  s i g n a l s  i f  

E [ s ( n )  w(/i)] = £[5(/i)] £[w(/j)] . I f  s ( n )  a n d  w { n )  a r e  z e r o  m e a n  t h e n  u n c o r r e l a t e d  s i g n a l s  

=> £[5(rt) w(/2)]= 0. Similarly, if s(jt) and w(t) are uncorrelated signals with zero mean then 

4^(0w(o]=o. 
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CHAPTER 1 

INTRODUCTION 

Design of optimal linear filters, predictors and state estimators is required in various 

signal processing and communications applications. In the past Kalman and Wiener filters 

have been used extensively for the design of optimal filters. These filters are based on 

l-i (minimum variance) estimation, i.e., minimizing £'[e^(n)], where e(n) is the error 

between the actual signal and its estimate at time n and E is expectation operator. These 

filters minimize the variance or the power of the error signal at every point in time. The 

optimality of \Wener filters is based on exact knowledge of the input signal and noise 

power spectral densities (PSD). The performance of these filters will degrade if the input 

n o i s e  s t a t i s t i c s  o r  s i g n a l - t o - n o i s e  r a t i o  ( S N R )  i s  c h a n g i n g  w i t h  t i m e  a n d  i s  n o t  k n o w n  a  

priori [21]. In many applications there is no exact knowledge of the input signals, noise, 

or SNR's. One solution to this is to use filters which adapt to changing input signals and 

noise statistics. Often, convergence speed determines the performance as it is assumed 

that the convergence speed is fast enough to track the changes in the input signal and noise 

statistics. On average, one can expect variation in output error power. This variation will 

be large if the input signal and noise statistics are changing faster than the convergence 

speed of the adaptive algorithm. Another approach to overcome unknown input signals 
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(noise in case of filtering problem) and model uncertainties is to use mini-max estimation. 

This will lead to a conservative (minimize the worst case input signals) design that is 

more robust to the unknown input noise. Performance of these filters will be conservative 

with less variation in the output error than the Wiener filter. 

The motivation behind this thesis work is to study minimization criteria which pro­

vides inherent robustness with respect to the unknown noise and model uncertainties and 

use it for filtering applications encountered in signal processing and communications. Re­

cently there is some work reported in the area of Hoc minimization which provide robust 

stability and performance for control system applications [3I[6I[7][30]. The idea is ex­

tended to the filtering applications where optimal filter is computed by minimizing Hoc 

norm of the error. It is reported [5] [12] [19] [25] that H^o filters should be better suited 

to applications with the unknown input noise and model uncertainties. This provided the 

motivation to study the usefulness of H^o filters for signal processing and communications 

applications and compare it with the well known least squares based Wiener filters. 

Let H(s) and H(z) be multiple input-output continuous and discrete time stable 

transfer functions respectively as shown in Figure 1. or are the 

p inputs and {OA.(t)}^i or {OA:(n)}^_j are the m outputs of the continuous or discrete 

time transfer function H(s) or H(2:) respectively. 

The //oo norm is defined as: 
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q(t) 

m 

0 (̂n) 

m 

H(2) 

(b) 

Figure 1: (a) Multiple p input and m output continuous transfer function, (b) Multiple p 

inputs and m outputs discrete time transfer function. 
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l|H(s)|lL = sup [H(ju;)] = sup A [ H i j u ; ) W ( j u ) ]  (1) 
uj^R}- u}€R^ 

l|H(-')||^= sup a=[H{e»")]= sup A [H(e^")H-(e^")] (2) 
-ir<n<7r •• -7r<n<7r •* 

Where a [.] and A[.] are the largest singiilar and eigenvalues of the matrix respectively. 

Where [.]* is the conjugate transpose of [.]. For stable transfer functions Hoo norm always 

exists [6]. The Problem of minimizing error using Hoo criterion is equivalent to minimizing 

Hoo norm of the transfer function between input signals to output error signals [24]. In 

case of >\^ener filters I2 norm of the transfer function is minimized. I2 norm for H(2:) or 

H(s) is defined as: 

l|H(z)l|^ = i£tr [H(e'-") H-(e'")] dQ. 

l|H(s)ll2 = ^ r PW") d^. (3) 
Z,n J—00 

Where tr [.] is the trace of a matrix [.]. Hoc filters in the time domain use the Hoo 

performance criteria to minimize the worst case output error with respect to the input 

signals present in the system. In the frequency domain, the Hoo criterion minimizes the 

maximum singular value of the error PSD over a specified frequency range. From (2) it 

is seen that in case of scalar problem (multiple input-single output) with inputs as white 

noises it minimizes the maximum value of the error PSD over all frequencies [9]. The 
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criterion has the inherent property of being robust to the variation of the input signal and 

noise in the system [12]. The optimal solution forces the error to be white noise [9]. For 

scalar case let ^ee(^) be the PSD of the error and W(s) be the weighting transfer function 

to shape the error PSD. Therefore, from white noise property [9](7opt is a constant): 

W(s)i„(s)W(s) =-yi, ^ $„(s) = (4) 

Where 7^^ is the error variance when optimal solution is achieved. From (4) the error in a 

prescribed frequency band can be minimized by using an appropriate weighting function. 

Also, conservative filters can be designed to account for system and noise uncertainties 

using Hoo criterion (see chapter 5). 

This dissertation discusses the characteristics of Hoo filters and performance benefits 

for applications encountered in signal processing and communications applications. The 

study of Hoc filtering has lead to following contributions found in this dissertation: 

* Most of the applications in signal processing and communications (SPC) assume zero 

mean wide sense stationary signals. There is a need to define the vector space for 

wide sense stationary input signals to give time and frequency domain representation 

of Hoo minimization criteria. Most of the work reported assumes a deterministic signal 

and therefore this issue was not addressed properly. This thesis is able to provide 
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the stochastic interpretation of Hoc filters which helps in understanding performance 

benefits of stochastic Hoo filtering. Various performance advantages over minimum 

error variance filters are interpreted (see Chapter 3). 

* In the applications area, a signal estimation problem of a Code Division Multiple 

Access (CDMA) system is studied. It is observed that mean square error (MSE) 

performance of Hoc filters show robust characteristics. The performance of Hoo filters 

is found to be better at low SNR when compared with minimum error variance 

filters. This performance benefit comes from the fact that Hoc, filters try to minimize 

the maximum eigenvalue of the matrix which maps input signals to the output error. 

This eigenvalue is an upper bound to the error variance. Therefore, it gives better 

performance when SNR is low (worst case). See Chapter 4 and 5 for details on this. 

* Recently, it is shown that the well known Least-Mean-Square (LMS) algorithm mini­

mizes the Hoo criteria [11]. It is argued that the robustness of LMS algorithm compared 

to recursive least-squares (RLS), which satisfies least squares solution, comes from the 

fact that LMS satisfies Hoc criteria. The advantage of RLS is its fast convergence com­

pared to LMS or Normalized Least-Mean-Square (NLMS) but have poor robustness 

properties. Using the coruiection between Hoo theory and LMS it is shown in this dis­

sertation that all the three algorithms (LMS, RLS, NLMS) are connected by a Kalman 
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gain which estinriates the gradient of the error in the direction of minimum error. From 

this it is shown that NLMS achieves the RLS solution when Hoo upper bound is 

made large. Therefore, the upper bound controls the robusmess of the algorithm and 

hence can be used to trade off robustness with convergence speed. This generates new 

class of algorithms which is named as sub-optimal NLMS (see Chapter 6 for details). 

Acoustic Echo Cancellation (AEC) example is taken to show that NLMS and RLS 

trade off robustness with performance. 

For both signal estimation and adaptive filter applications it is observed that H^o filters 

have better robust performance (achieve minimum mean square error (MSE)) with respect 

to input noises as compared to minimum variance filters. However, the performance of 

minimum variance filters is better when the SNR is high or exact knowledge of input 

signal PSD is known. Therefore, there is a trade off between robusmess and performance 

when using Hoc and I2 type filters respectively. 
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CHAPTER 2 

SCIENTIFIC BACKGROUND 

In the last few years, the Hoo control problem has received considerable attention 

[1][3][30]. Hoo criterion is used to compute controllers which provide robust stability and 

performance. Most of the control problems assume finite energy input signals which lead 

to early work on Hoo minimization with finite energy signals. The finite energy signals 

taken were square sunnmable. For example if r{t) belongs to finite energy signal then it 

should satisfy: 

For the finite energy input signal case, Hoo minimization is a mini-max problem where 

the maximum energy in the error over all input signals is minimized. In the frequency 

domain it minimizes the maximum singular value of the transfer function from input 

signals to output error signal over all frequencies. 

The concept of Hoo norm was introduced and studied by Zames [30]. Later the 

concept was developed for single-input single-output systems by Zames and Francis [7]. 

The motivating factor for using Hoo norm was the realization that classical Wiener or 

Kalman (WK) theory is concerned with a different category of mathematical problems. 

In a typical WK problem, the quadratic norm of the response to a interference or noise 
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w  { w { n )  or w { t ) )  is minimized. In a deterministic version the frequency spectrum of 

w is known, in stochastic versions, w belongs to a single random process with known 

covariance properties. However, there are many practical problems for which w belongs 

to a class of random processes whose covariances are uncertain but belong to a prescribed 

set. For example, in audio design, w is often one of a set of nairow-band signals in 

the 20-20K Hz interval, as opposed to a single, wide-band signal in the same interval. 

Problems involving such more general interference sets are not tractable by WK [21]. It 

was shown in [30] that the H^o norm, as opposed to I2 norm of the WK approach, is ideal 

for handling uncertainty in the system's model frequency response or in the frequency 

spectrum of the exogenous signals. 

Subsequently, the Hoc criterion was found to be useful for analyzing robust stability 

of closed loop systems with unknown disturbances [4] [6]. It was used to find parametric 

controllers which achieve robust stability for a control system with uncertainty belong to 

certain class. 

Hoo optimality criterion for the filtering applicadon was studied by some researchers. 

The design of optimal linear filters and predictors using H^o criterion was first considered 

by Grimble and Sayed [10]. The motivation behind their work was to keep the estimation 

error spectrum small over a range of frequencies. It was concluded that by introducing 

frequency weighting, the error in particular frequency ranges can be reduced to lower 
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values than is possible with a minimum variance type of filter. Moreover, with an 

filter the shape of the error spectrum is completely determined a priori by the inverse of 

the weighting function, whatever the signal and noise model descriptions. Finally, it was 

reported that the H<x, filter is suitable for applications which require the error spectrum to 

be made uniformly small, or the error in a particular frequency range to be made as low 

as possible. 

Shaked [24] smdied the Hoc filtering problem in a frequency domain setting for 

stochastic continuous time signals. He concluded that the estimation of a signal embedded 

in white noise is better (subjective visual comparison of the estimated signal) using an 

Hoo than a Wiener filter. Later he provided a state space solution for continuous time Hoo 

filters under some restrictive conditions [25]. 

In another paper by Nagpal and Khargonekar [19], filtering and smoothing was con­

sidered in an Hoo setting for finite energy continuous time case. They derived necessary 

and sufficient conditions for the existence of estimators (both filters and smothers) that 

achieve a prescribed Hx, performance bound for situations when the plant and measure­

ment noises have uncertainties. 

In a recent paper by Shaked [25], properties of the minimum Hoo norm filtering 

estimation error have been investigated. The relation between the optimal estimator and 

the equalizing solution (error is white noise) to the standard Hoo iTiinimization problem is 
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discussed. The optimal estimation method is applied in the multivariable deconvolution 

problem. A simple deconvolution filter of minimum order is obtained which minimizes 

the Hoo norm of the deconvolution error. It was stated that the Hoo methods of optimal 

estimation and deconvolution are useful in cases where the statistics of the noise signals 

are not known completely, or in cases where it is required to minimize the maximum 

singular value of the estimation, or the deconvolution, error spectrum. 

In all of the above work, the Hoo filters are derived in fi-equency domain (by assuming 

finite energy or stochastic input signals) or in time domain (by assuming finite energy 

input signals). Recent attempts have been made towards the time domain stochastic 

interpretation of these filters assuming the inputs as WSS [9][27]. Also, in [5][23] it was 

claimed that the Hoo criterion was more suited to cancel Inter Symbol Interference (ISI) 

compared to Wiener filter. 

In a recent work by Hassibi et al. [11], it was shown that LMS and NLMS adaptive 

algorithms are Hoo optimal and therefore are more robust to the finite precision effects (in­

termediate variables in the algorithm accumulate error when computed on finite precision 

machines) and input noises (achieve lower MSE when the filter coefficients are updated 

in the presence of noise) compared to RLS which is I2 (minimum variance) optimal. 

In summary, it is been reported that Hoc filters are useful in the following situations: 

the estimation error is required to be small in a specific frequency band, the error spectrum 
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is to be made uniformly small for colored noise, the peak of the error spectrum is to be 

minimized, or the input signals have unknown statistics. 
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CHAPTER 3 

CHARACTERISTICS OF FILTERS 

This section will discuss mathematical formulation of //<» optimality criterion and 

look into its main characteristics. The main emphasis is on the stochastic interpretation of 

Hoo filters. Most of the earlier work done in Hoo filtering area assumes input signals to be 

finite energy in nature. We provide mathematical frame work to define H^o filters when 

input signals involved are wide sense stationary signals. From this various advantages of 

Hoo filter over Wiener filter are identified. 

3.1 Stochastic Hoo Filters 

Consider the general estimation problem of Figure 2 encountered in most of the signal 

processing and communications problems. G{z) and N{z) are the signal and noise models 

r e s p e c t i v e l y .  C { z )  i s  t h e  c h a n n e l  t r a n s f e r  f u n c t i o n  w h i c h  c o r r u p t s  t h e  s i g n a l  a n d  W { z )  

is the weighting function that weights the errors. H{z) is the optimal filter obtained by 

minimizing the desired optimality criterion. Inputs to the system are random signals with 

zero mean and second order stationarity. Let T(c) be the transfer function from inputs ( 

l{n) = [s(n) Zi;(n)]) and output (ei(n)). Then 

T .W=H'(^)[G(2)-G(.-)C(r)//W -  H { z ) N { z ) ]  =  W { z } T { z )  (5) 
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w{n)  

x{n)  

sin) 

v(/i) 

Giz)  

N(z)  

H(z)  
C(z)  

Giz)  

Figure 2: Signal estimation problem for discrete time system. 
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Since Ti(z) TJ(z) ([.]* represents the conjugate transpose of [.]) is scalar (single input-

output) the Hoo norm from input to output (from (2)) will be [24]: 

l|Ti(z)|lL = IIWWTWIlL =sup |M'(e^")T(e''") T-(e'°)W(e'")| (6) 

If input and output signals are vectors then the transfer function Ti(2) will be a ma­

trix. Since we are considering signal estimation problem of Figure 2 the analysis will 

focus on the scalar H^o norm of (6). In order to see norm in time domain let 

us define input signals belong to a two-dimensional P2 vector space. Where p2 = 

{[s(n) w{n)] / s{n),'w{n) E . Inner product and norm on p2 is defined as (as­

suming s(n) and w{n)  are uncorrelated): 

([si(n) it;i(n)], [s2(n) •W2{n) \ ' ' )  = E [si(n) s;(n)] -f E [u;i(n)'u;2(n)] (7) 

The vector space with inner product and norm is a Hilbert space. Therefore, p2 is a 

Hilbert space. PSD of the output signal (3>eiei (2)) is given by: 

(8) 

«..=,W = |T,WP4>„(--) ; l[.l|' = [.l[.r 

where is the PSD of the input signals. Also, 

| | e i (n) | |2  =  E[e\{n)]  =  |Ti (e^") |^$; / (e^") ( i f i  

< l|Ti(r)tir;^/7(e^")rfQ= ||Ti(z)f^£;[/(n)/-(n)] = 
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= IIT.WIlL l | /(n)ll2 ;  ll-fWII, = +«I^W1. 

Therefore, 

im(^)||| ||ei(n)|i; 
l|/(n)ll^ II/WII2 

^ < I|T,(;)||L (9) 

where L is the linear time domain operator which maps the input signal 1 (n) to the output 

signal ei(n). To show that ||Ti(z)||^ is the least upper bound of consider input 

signal l-i (n) such that 

= 27r5nfio ; IIAWII2 = li ^ P2 (10) 

where fio is the frequency such that ||Ti(z)|l^ = Ti(2 = e^"°)Ti(z = Therefore, 

B [efW] = i |T,(ef>)|' 2t da = ||T,(z)||̂  (11) 

since = 1 , therefore, 

\ \L l i {n) \ \ l  | |e i (7 i ) l l2  2  
11/  ~  wr ^^mi2  ~  l lJ-u- i l lcx .  

from (9) and (12) 

IILII2 sup 2 ~ sup 2 ~ 11^1(2:) 11^^ (13) 
11/(1)11^5^0 P(n)|l2 P(n)lli# 0 Il-^("')ll2 

where \ \L \ \2  is called induced second norm of operator L and sup is supremum over all 

/(n). Also, it is easy to see 

I|ei(^)ll2 = sup ||ei(n)||^ (14) 
P(n)il25^ 0 ll-'Wlb l|/(n)lli< I ||/(n)|||= 1 



www.manaraa.com

17 

From (14) this means that if the Hoo norm of the transfer function between the input 

signals and the error is minimized then the time domain solution is 

=min sup ||ei(n)Il2=min sup ||ei(n)|j2 (15) 

and the frequency domain solution is [24] 

min sup |pF(e^")T(e^") T*(e^'")W^*(e^")|. (16) 
H ( z )  C I  '  '  

H{z)  is the optimal filter which minimizes the error in norm sense. Following the 

above methodology one can derive a similar relationship [9] [27] between time domain 

and frequency domain Hoo minimization criteria for continuous time system of Figure 3 

=^nsup |W(iw)T(j^^ (17) 

3.2 Hoo Filters for Finite Energy Signals 

Similar results as derived above for stochastic signals are shown for finite energy 

continuous time signals in [19], i.e., 

T'{ jo j )W{ju) \  (18) 
0 II-'(^)ll2,|0,oo] 

where I  (t) and ei ( t )  belong to space of finite energy signals with inner product and norm 

defined as: 
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w(r) 

wrs) 

H(s)  G(s )  

N(s )  

G(s )  

Figure 3: Signal estimation problem for continuos time system. 
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{ m , 9 { t ) ) = S o ^ f { t )g ' { t ) d t  

Il/(^)ll2,[0,ool ~ Jo • 

From above results it is clear that the optimal filter obtained by minimizing 

criteria will be same for both finite energy and stochastic signals as the minimization 

depends on the transfer function from inputs to the output. However, the interpretation of 

the results in time domain will be different as minimization is dependent on input signals 

(vector space of the input signals are different for finite energy and stochastic signals). 

3.3 Advantages of Ifoo Filters 

The preceding mathematical formulation can have various interpretations leading to 

advantages to the Hoo minimization. Following are some of the unique features of Hco 

minimization: 

* The optimal solution (provided it exists) to the minimization problem of (13) is a 

constant [9]. Let this constant be 7^^, then the optimal H{z) will yield: 

\W(z)T:(z )T(z)W[z) \  =  - i^  (19) 

If inputs to the system are white noises with unity variances, then the PSD of the error 
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(ei(n)), 3>e,e:(z), is given by [10]: 

= W{z)^ , , [z )W'{z)  =  mz)T{z)  T '{z )W'{z) \  = (20) 

This shows that for scalar case the PSD of the error e{n)  (^ee{z) ) ,  is given by the 

inverse of the weighting function, no matter what the signal and noise models are used 

to compute the optimal filter. In other words the Hoc criterion provides a whitening 

filter fi-om the input signals to the output error provided the inputs are white noises of 

unit variance. This is often the assumption on inputs when considering signal and noise 

models. One advantage of this is that if the requirement exists to minimize the error 

in specific frequency bands, then it can be done exactly using Hoc criterion. In case of 

Wiener filter we cannot guarantee output error to be white. Therefore, minimization 

of eiTor in specific frequency bands cannot be done exactly. In case of sub-optimal 

where 7^ is a constant. 

* From (13) it can be interpreted that in the time domain optimal H^o filter looks for the 

worst case input random signal and minimizes over H{z) assuming these worst case 

solution: 

= W{z)^ec{z)W'{z)  =  \W{z)T{z)  T ' {z )W'{z) \  <  7 '  (21) 

.  I |ei(^)ll2 .  - 2  (22) 
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input signal variations. This says that Hoo filters are robust to input signal variations. 

When exact knowledge of SNR is not known or signal statistics are changing with 

time then these filters should provide a better performance compared to Wiener filters. 

- From (22) if the input signals belong to space of stationary random signals with 
II ||2< 1 then 7^ places an upper bound to the error variance: 

NiC")#! < t" ; II m Il2< 1 (23) 

This suggests that it also provides robust behavior with respect to minimum variance 
criterion under the restrictive class of input signals. 

3.3.1 Remarks 

For finite energy input signals the Hoo norm is the maximum energy gain from inputs 

to the outputs. It guarantees the smallest estimation error energy over all possible input 

signals of fixed energy. filters are thus overly conservative, which reflects in the better 

robust behavior to noise variation (see applications section for this point where comparison 

is made between LMS and RLS algorithms). Consider the estimation problem in state 

space 

A'(n + 1) = AA'(n) + B[/(n) (24) 

Y[n)  =  CX{n)  + YyU{n)  

0{n)  =  LX(n) 
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where the output signal is given by 0{n)  =  LX{n) ,  X(n)  are the system states, and 

A,B,C, D are constant matrices. Hoo estimators are observed to be dependent on L 

unlike Kalman filter estimator which is dependent on C [13][25]. Also, it is shown for 

both continuous [19] [25] and discrete time cases [12] that 7 —» oo gives the minimum 

variance solution, i.e., if we pose the minimization problem as: 

min sup (25) 

subjec t  to  :  ^  <  7^  

then 7  —»• CX3 will converge to minimum variance solution. This suggests that the Hoc 

norm of the minimum variance filters may be quite large, indicating that it may have poor 

robusmess properties. 
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CHAPTER 4 

MATHEMATICAL SOLUTION 

As with any other mini-max design, the solution to //oo is more complex compared to 

minimum variance filters. Unlike the h norm H^o does not have closed form solution. H,x, 

norm is computed through iterative procedure (see section 4.1). The solution to the Hoc 

problem was earlier used to compute //qo controllers. Most of the earlier solutions were 

available in control problem framework. Among these the classical approach to solving 

Hoa control problem has been via analytic functions (Nevanlinna-Pick interpolation) or 

operator-theoretic methods [7], and frequency domain solution using model matching and 

Hankel approximation methods [6][16]. Then a procedure was designed requiring the 

solution of a Riccati equation [20]. This has led to the development of the "standard 

problem formulation" [3]. Recently some solutions are available using game theoretic 

approaches [1][26]. 

The first attempt to solve H^o filtering problem is made by Grimble [10] using 

polynomial systems approach in frequency domain for discrete time systems. Shaked 

have shown the solution for continuous time case in frequency domain setting [23] [24]. 

Model matching solution for continuous time case is shown in [27] and solution using 

game theoretic approach for both continuous and discrete time systems is discussed in [1]. 
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Recent contribution is by Babak eL al. [13] where discrete time solution is shown under 

krein space setting. It is reported that Hoo filtering is Kalman filtering in krein space. 

Given a deterministic quadratic form in krein space, one can relate it to a corresponding 

stochastic problem for which the Kalman filter solution can be computed. Moreover, 

the condition for a minimum can also be expressed in terms of quantities easily related 

to the basic Riccati equations of the Kalman filter. All approaches require minimum of 

solving one Riccati equation to check the condition if a filter can be obtained so that 

This section will cover the methodology used to compute Hoc filters available in 

literature, problems associated with the current solutions, and FIR filter design which 

minimize Hoo criteria useful for applications in signal processing and communications. 

4.1 Hoo Norm of Continuous TVansfer Function 

Consider finding Hoo norm of a scalar transfer function G (s)  represented with state 

space quantities A, B, C, and d as 

assume G(s)  is strictly proper, i.e., d =  0  (degree of the numerator is less than degree of 

the denominator) then following conditions are equivalent [3] 

l|Ti(.~)IL < 1. 

(26) 
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a- llG(s)||^ <7;7>0 

b. H has no eigenvalues on the imaginary axis. Where H = 

^ -C'C -A' 

and [.]' is transpose of [.]. The norm can be computed as follows: Select a positive 

number 7 ; test if |lG(s)||j„ < 7 by calculating eigenvalues of H ; increase or decrease 

7 accordingly. Thus, norm computation requires a search over 7, in contrast to 

minimum variance, which does not. If d ^ 0 then Htx, norm will be 

|g'(»)L = IH+gwil < <i+ IIGWI1„ <d+f (27) 

where 7 can be obtained for G{s)  =  C{s l  — A)  ^ B .  

4.2 Hco Norm of Discrete TVansfer Function 

Assume G{z)  is strictly proper. It can be shown [3] that if the transfer function given 

by 

^ (28) 
[1 - ̂ G(z)  G-(z)] 

is stable (all poles inside unit circle) then -G(z) < 1. H^o norm is the minimum 
li "y iioo 

value of 7 for which — •^G{z) G*(2)| ^ is stable. Therefore, a search over 7 is done 

to obtain Hgo minimum norm value as described for continuous time transfer function. In 
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the case of minimum variance we can compute the I2 norm in a closed form as: 

We can see complexity involved with computing Hoo norm. Similarly, for computing 

optimal filter a search is to be made over 7. 

There are many solutions present to solve Hoc optimization problem for control system 

problems in frequency domain. Most of the earlier solutions are based on the Model 

Matching approach described below. Earlier attempt made towards //QO filter solution for 

discrete time system is the polynomial system approach [9]. 

4.3.1 Model Matching Solution 

43. Ll Discrete Time 

The basic idea behind solving Hoo optimization problem in frequency domain under 

model matching solution is to reduce the transfer function from input to output signals 

to Hankel approximation or Nehari extension problem. For example 1| Ti(x:) Hoc, can be 

(29) 

4.3 FVequency Domain Solutions 
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represented as [27]: 

\ \Tu{z)  -  T2i(z) / / (z)||^ = \\W{z) [G{z) 0] - W{z)  [C{z)G{z)  N{z)]  H{z) \ \^  

(30) 

where Tii(z) and T2i(z) are stable transfer functions. Through series of operations (30) 

can be convened to ||R-(2) + 1^(2)1100 [16]. Where R_(z) describes a given anticausal 

linear time-invariant discrete time system and R(2:) is a causal linear time-invariant system. 

R_(2) is a function of Tii(z) and T^iiz) while R(2) is a function of H{z). In order to 

obtain optimal H{z) we have to solve: 

^| |R_(2)+RW|L. C31) 
H ( z )  

Altemate to (31) we can solve 

^ < 1 (32) i(R_W + RH) 
7 oo 

for minimum value of 7. So the problem is reduced to approximating a causal transfer func­

tion R(2:) with anticausal transfer function R_(2). Let R-(2) = D -I- C (2I — A)~^B 

be the transfer matrix of an anticausal discrete time system and let R{z) = Di -I-

Ci (2I —AI)~'BI be the transfer matrix of an causal discrete time system. If there 

exists an R(2) satisfying (32) for some value of 7 then Ai, Bi, Ci, and Di are given 

by: 

Ai =: [A- + D"^ (I - A)-^ BB*] [l -h D-i (I - A)-^ BB']' 
i-i  
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Bi = (I - A*) [l + D-i (I - A)-' BB*] D-i (I - A)"' B 

Ci = C (I - A)-^ P (I - A*) [l + D-^ (I - A)-^ BB*] 

Di = C(I-A)-^B-C(I-A)-^P(I-A') 

+ D"^ (I — A)~^ BB*] ^ D~^ (I — A)~^ B. Where P and Q for the discrete time 

system R_ (z) are given by: 

P = APA* + BB* ; Q = A*QA + C*C . 

43.L2 Continuous Time 

Let Ti{5) be the transfer function between input signals w(t )  and s{ t )  and output 

signal Bi (t) , as shown in Figure 3. Then the transfer function can be wrinen as 

T:(S) = ITU(S)-T2I(S)I/(3)] (33) 

where Tii(s) = [G(s) 0] W(s) and T2i(s) = [G(s)C(5) //(s)] W(s) . If the input 

signals are white noises with unit variances, then the PSD of the error ej (t) is given by 

[10] 

$e.e: (s) = T,(s) T':(s). (34) 

The Hoo optimization criterion implies minimization of the largest singular value of the 

error PSD matrix, which can be represented as [10] 

min sup U'^)l = min ||$e,e: { s ) \ \^  =  rmn ||Ti(s)||^ (35) 
rx(5) uj  " (s )  
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where sup is the supremum over all u . The optimal filter is the solution to 

mn ||T„W - Ti,(s) H{s) \ \^  (36) 
H(s) 

where H{s)  E RHca •  This can be solved using Nehari's theorem [6] to obtain sub-

optimal Hoo filter. Let (representing transfer function [.] (s) with [.]) 

7oo = inf(7:||Tn-T2i//|L<7) (37) 

Theorem 1 [6] :  ( i )  7oo = inf (7 : | |Yl |G^ < ' y ,d i s {Q,  RHoo)  < l ) -Q andY represent  the  

same quantity as in step 3 below, (ii) Suppose ^ > y^o r H,X E RHoo- ||<5 — -^lloo < ^ 

and X = T^oHY-^ then ||T„ - T^iHW^ < 7. 

From this theorem following steps can be followed to compute sub-optimal H^o filter 

using 7 iteration. 

Step 1: Get inner-outer factorization of transfer function T21 such that T21 = T2it TJjio. 

T2ij is inner of T21 and T210 is outer of T21. 

Step 2: Define RLoo function Y = (/ — T2itT5iiTii). 

Step 3; If 7 is a real number greater than ||Y||^ then [7^ — Y*Y] has a special factor 

Yo . Define Q = Q 6 RL^a . 

Step 4: Select trial value for 7 in interval (||Y||^ , qj) , qi > ||Y||^ . 

Step 5: Compute hankel norm HFQH . IIFQH < 1 < 7- Reduce value of 7 and 

go to step 4. When a sufificiendy accurate upper bound for 700 is obtained go to step 6. 
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Step 6: Find matrix X in RHoo such that HQ — < 1-

Step 1'. Solve Hs^b-optimcU ~ T^io^Yo-

Frequency domain solutions can have numerical inaccuracies when order of the poly­

nomials involved are large. We have experienced this problem while working with model 

matching solution and also been reported in [5]. 

4.4 Time Domain Solutions 

4.4.1 Discrete Time 

Time domain solutions are present under state space settings. Consider state space 

representa t ion  o f  t rans fer  func t ion  M(2 )  f rom input s  ( 5 (n )  and  w{n))  to  output s  id{n)  

and v{n)) as shown in Figure 4: 

X(n + 1) = AX(n)  + Bis{n)  +  B2w{n)  (38) 

d{n)  =  (^X{n)  +  dis{n)d2w{n)  

v{n)  =  C-iX{n)  +  dos{n)  

where s(n),tu(n) are the input signals to M(2), d{n)  and v{n)  are the observation and 

desired signal value as shown in the Figure 4. G(z),N{z), and C(z) are signal, noise, 

and channel models respectively. W(z) is the whitening filter. X (n) is the state vector 

and A,Bi, B2, Cj, C2, d-^, d^-, d^ are constant matrices, vectors, and scalars. To obtain a 
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filter H{z)  represented in state space as 

Xi(n + 1) = AjX^{n)  +  Bjd[n)  (39) 

v{n)  =  CfXi{n)  +  dfd{n)  

which minimizes //oo norm of the error e(n) = v(n) - v(n) requires solution (matrix P) 

to the discrete time Riccati equation 

G - P + A*PA = (F + A'PB) (R + B'PB)"^ (F'+B'PA) (40) 

where Af ,Bj ,  Cf ,d j  in (39) are constant matrices obtained for optimal H{z) ,  B = 

[Bi Bi], and v{n) is the estimate of v{n). The matrices G,F,R are coefficients of the 

quadratic form ; 

C (L, U) = L*(n)GL(n) + 2L*(n)FL(n) + U'{n)RU{n)  (41) 

where L{n)  and U{n)  are function of s(n),w(n), andX(n) [17]. The optimum Boo filter 

is given by [17]: 

A/ = A + Bf Oi , Cf = — C2 -h df Oi 

BfL-dff =nunA+[P|(L,(/,/) 

where 

A+ [P] (L, U J )  =  c : { L ,  U )  +  \ A - L { n )  +  C ^ f { n )  +  C 2 f { n ) \ l  -  |L(n)l^ . Where 

l[-]lp = [•]'?[•]• 
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w(n)  

x (n)  

+X d (n)  s (n)  

v (n)  

W{z )  
N(z )  

C(z )  G(z )  

G(z )  

Figure 4: Signal estimation using filter H{z)  from observed signal d{n) .  



www.manaraa.com

33 

4.4.2 Continuous Time 

First we will solve a simple filtering problem (represented by (42)) and then extend 

the same idea to solve the general filtering problem (represented by (56)). This will show 

the problems associated with the solution to general filtering problem. Consider a filtering 

problem in state space form: 

X'{ t )  =  AX{t )  +  BiS{ t )  (42) 

d{t )  =  C2X{t )  +  w{t )  

v{ t )  =  CiX{t )  

where s{ t ) ,w{ t )  are the finite energy input signals. d{t )  and v{ t )  are the observation and 

desired signal value. X{t) is the state vector, and A,Si, (7i,and Cb are constant matrices. 

The idea is to estimate v{t) as v{t) from observed signal d{t) using a state space filter as: 

X[{t )  =  AfX,{ t )  +  Bfd{ t )  (43) 

v{ t )  =  CfX^i t ) .  

We have to find optimal filter which achieves minimum Hoc norm. First a filter is derived 

which keeps a unity upper bound on the norm from input signals to the output error. 

Then through iteration minimum value of the H^c norm can be achieved as discussed in 
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section 4.3. To find a filter which achieves norm less than unity it should satisfy: 

=i- r \s(t)\^ + > 0. 
Jto  

Let to = —oo and t = 0. By changing the time axis the above optimization problem can 

be stated as [17]: 

X'{ t )  =  -AX{t ) -Bis{ t )  (45) 

/  |s(OI^+ 1^(01^-1^^(0-^(01^ > 0-
JO 

For worst case input signals d{t )  =  0 when v{ t )  0. For unbiased estimator d {fy = 0 

=> v{t) = 0. Therefore, (45) can be modified as 

X'{ t )  = -AA'(i) - B^s{ t )  (46) 

jT  \s{ t ) f  + \C2X{t ) f  - \C^X{t ) f  >  0. (47) 

From Kalman Yakubovich theorem [29] (see Appendix A) it is shown in [17] that 

the solution to (46) with constraint (47) exists if P satisfy the Riccati equations 

Ci C2 - C; Ci - PA' - AP* = PBi B;P' ; P > 0 (48) 

BiBi* + AQ* + QA* = Q (- Ci+C^Ci); Q = P"' > 0 (49) 

(—A — BiB^P) and (A* — C{CiQ + C2C2Q) is Hurwitz. 
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multiplying (48) from the right hand side with P~^ 

A + C; CiQ - = Q-' l-BjB,' ~ A*Q] = Q"^ [-A* - Q (50) 

The same result has been derived in [19] in a different way. 

From (42) and (43) 

X'( t )  =  AX(t )  +  Bis( t )  (51) 

A'; ( t )  =  AfXi( t )  +  Bf(C2X(t )  +  w(t ) )  

or 

X'( t )  

x;(t) 

e( t )  =  

A 0 

Bf C2 A.f 

Cr  -Cj  

Xit )  Bi 0 s{ t}  
+ 

. . 
0 Bf w{t)  _ 

X{ t )  

X ,{ t )  

Transfer function from inputs s{ t )  and w{t)  to the output e( t )  is 

T = C(5l-A)"^B 

=>T* =B* (-sI-A*)"^ C- . 

State space represenution of T* 

I 1 1 

>
 I 1 1 

>
 I 

+ 

1 

0
 

>
 

1 1 I 1 

1 

'
 

9(0 

(52) 

(53) 
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B* 0 Poi t )  

0 B} 
. . 

since Hoo norm of a transfer function and its conjugate is the same, therefore the mini­

mization problem (45) can be formulated as 

P^t) = A-Po { t )  +  c ; g ( t )  +  c r M t )  (54) 

jj'-m\'' + \s;p„(t)f + \g{ t ) fd t  <  0 • ,B}P ,=g( t )  

since Po{ t )  is finite energy, therefore •Po(^)Q-f'o(i)lo° = 0 assuming Po(0) = 0. 

IS° - l?(i)P + ISj-ftCt)!' + ls(!)l' + {p;mPM)'dt 

= jr- l9(()P + |Br«>WI' + ls(<)l'  + 2fie WWQ(A-Po(t) + C^g{t )  + c;qmdt  

from (49) 

= f  {l5(t) + Q>QPo(t)|' -  m -  C,QPo{ t ) \^}d t  (55) 

Therefore, 

g{ t )  =  -C2QP0W =  B}Pi{ t )  Po{ t )  =  Pi( t )  

^ Po(0 = A*Po(t) + q5(0 + C^q{t) ; P[{t) = (A* - C^C^Q) Pr{t) + C^q{t) 

A/=A-QC2*q2 ;Cf  =  -Ci  • ,Bf  =  -Q'C^ 

Following the above methodology which is the basis for the state space solutions 

to Hoo filtering problem in [19] [3], we will compute the solution to a general filtering 
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problem of Rgure 3 with state space description: 

X'{ t )  =  AX{t )  +  Bis{ t )  +  B2w{t)  (56) 

d( t )  =  C2X(t )  +  dis( t^  +  

v{ t )  =  CiX{t )  +  doS{t )  

where s ( t ) ,w( t )  are the input signals. d( t )  and v( t )  are the observation and desired signal 

value as shown in the Figure 3. X(t) is the state vector, and A,Bi, Bj, Cj, Cj, rfj, 0^21 

are constant matrix, vectors, and scalars. 

Most of the solutions [19] [25] work under some restrictive conditions on matrices 

Si, ̂ 2, di, dj. For example in [19] it is assumed that 

D 

1 
w

 
o*

 
i 1 

0
 

•
 

D'  1 
1—

1 

•
 

;  D= [di ^2]; Bq= [Si S2]; tio = 0. (57) 

These conditions are found to be true in general for problems in control systems. 

But are not generally true for filtering problems (for example do 0 and DB5 ^ 0 

for filtering problem of Figure 3). One should be very careful while working with time 

domain solutions for a general filtering problem represented by (56) to obtain a general 

filter like (58). From the solution discussed above we will get an inside on why these 

restrictions are made and how to get around it. 

Idea is to obtain a filter H{$)  represented in state space as 

X^{t )  =  AfXi{ t )  +  Bjd( t )  (58) 
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v{ t )  =  CfX^i t )  

which minimizes H^o norm of the error e{ t )  =  v{ t )  — v{ t ) .  The minimization condition 

(46) and (47) for the general filtering problem is 

X'{ t )  =  -AX( t )  -  Bis i t )  -  Bi  { -d^^  C2X{t )  -  d^^dis i t ) )  

/o~ - |v(0 - v{ t ) fd t  >  0 

= /o~ \s(t)f + \ -d^^C2X{t )  - -  |CiX(t) +dos(t) |^dt > 0 

From Kalman Yakubovich theorem [29] it is shown in [17] that P should satisfy the 

following Riccati equation: 

+ PA* + AjP* = (F + BP) (F + P5)* (59) 

where 

B = — (^Bi — 52*^2 

F is the  coeff i c i en t  o f  X{t)  and  s{ t )  

r  is the coefficient of s^{ t )  

Qi is the coefficient of X^{t )  

Qx =  c^{d^'y  d^'C2-Cia  

F = 2Re (Cj* (da"^)* d^'^di + qdo) 

r  =  1 +  

Ai = — ^A — B^d^^ 
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Let Q = P"^ and multiplying (59) both sides with P ^ 

Q[(ff2-^a>)*(d2-^a>)-c;a]Q = 

[2Re [Ca* (^2"^)' + C{do] + PB] [l + [did^^dof^ 
Q * 

f2Re fCa' (d^^Yd^^di + Cfrfo] +PB]* 

Q + AiQ' + QAJ 

now, from (56) and (58) 

X'( t )  =  AX{t )  +  + B2w{t)  

= A.fXi( t )  + Bf [C^Xi t )  + dis{ t )  + d2'w( t ) )  

e{ t )  =  CiX{t )  — CfX- i{ t )  (assume do = 0) 

-1 

X'( t )  A 0 

1 • 

+ 
Bi  B2 s i t )  

X[( t )  Bf O2 A.f Bf  d i  Bf  d^  
. . 

e{ t )  =  C] —Cf  
X i t )  

A'i(t) 

Transfer function from inputs s{ t )  and w{t)  to the output e{ t )  is 

T = C (si - a)'^ B =?• T* = B* (-sI - A*)~^ C' 

state space representation of T* 

P'oi t )  A* Cj Bf 

1 
HO 

» 

l i t )  = + l i t )  
P'At) 1 

0
 

>
 

1 1 5
 

1 -C}  

E(t) = 
5; Bfd^ 

Bj* Bfd;  

Po{t )  

P i i t )  
Therefore, 
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Po(0 = A'Poit) + C^B}P,{t) + C,'q{t) 

Subjected to: 

/o~ - kwr + IB P̂oit) + Bfd̂ P̂ f + \B P̂o{t) + Bfd̂ Pif dt < 0 

= fo°°  -  k(Ol '  +  IB^Poi t )  +  S/drPi l '  +  iB^Poi t )  +  Bfd^Pif  +  {PS{ t )QPo{ t ) ) '  d t  

=  /o~ -  mf  + \B^Po{ t )  +  +  \B;Po{ t )  +  Bfd^Pif  

+2Re (Po(t)Q (A-Po(t) + C2'B;Pi(t) + Cj'g(t))) dt  

To make above integral into components of perfect square to get equation similar to 

(55) is not easy. This is the reason why the assumptions in the earlier reported state space 

solutions are made on state space matrices to eliminate dependence on di,d2, B^, and dc 

matrices. One possible way to get around this problem is to transform the original system 

so that dependence on dj and d^ is eliminated which can be done as follows: 

s{ t )  

w{ t )  

Sna<;(0 s{ t )  1  0 

dis{ t )  + d2w{t )  d i  d i  

therefore, 

s{ t )  

w{ t )  

replacing s{t 
'^neuiify 

1 0 

—d^ d\ d^ 

and w{t )  in (56) to eliminate and d^ as follows: 

X'{ t )  

d{ t )  

— A.\{t^ + (^Bi — Bid^ ^(0 Bid^^wit^ 

= C2A (t) + Os(t) + ^y(^) 

(60) 
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v{t )  =  CiX(t )  + dos( t )  

let 

B\n = Bi — B2d2 ^di (61) 

Bin = Bid^^ 

from (61), (60) can be written as (assume do = 0) 

X\t )  = AX(t) + 5i„5(t) + 52nu;(t) (62) 

d{t)  =  C2X{t)+w{t)  

v{ t )  = cix(t) 

even with this transformation we are restricted with the condition d-J ^ 0 and do = 0-

Solution to (62) can be computed with the same procedure used for (42) and is given by: 

A/ = A — C2C2 — C^B^ ; Bf = — (QC2 + B2n) 

C f  = 

4.5 Krein Space 

In recent work by Babak et. al. [12][13] H ^ o  filtering problem is solved in krein 

space. There approach gives a recursive solution to filtering problem. It is shown 
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that Hoa filter is Kalman filter in krein space. Consider the state space equations 

^•(n + l) = A(n)X(n) + Bi(n)s(n) (63) 

d{n)  = C2(n)X{n)+ w{n)  

v{n)  = C2{n)X{n)  (64) 

with 

s{n)  s{k)  
\ 

q(n)6nk 0 0 

win)  7 w{k)  ) = r{n)6nk 0 

A'(0) 
k  

Ho 

where is the inner product in krein space. See Appendix B for krein space definition. 

Then  the  es t imate  o f  v{n)  f rom observed  s igna l  d{n)  i s  g iven  by  v[n)  = C2{n)X{n)  

where 

X(n + 1) = A(n)X(n) +/Cpn (d(n) — C2(n)^(n)^ ; 0 < n < rii ;A'(0) = 0 

Kpa = A(n)P(7 i )C2*(n)7 -^  ;  7 -^  =  (e (n) ,  e (n ) )^  =  r{n)  + C2in)P{n)C^{n)  

and the P(n) can be recursively computed via the Riccati recursion 

P(n + 1) = A(n)P(n)A*(n) - + Bi{n)q{n)Bl{n)  ; P(0) = Ho (66) 
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4.6 Least Squares Solution 

In least squares solution the average squared eiror is mininuzed. More appropriate 

name for this is linear minimum MSE. This is bit wordy so the name is usually shortened 

and the theory is included as part of the general theory of least squares. Simply stated, 

the linear least squares filter problem is this: given the spectral characteristics of an 

additive combination of signal, channel and noise, what linear operation on the input 

combination will yield the best estimate of the signal. Best in this case means minimum 

mean-squared error. This branch of filtering began with N. Wiener's work in the 1940s 

[28]. R. E. Kalman then made an important contribution in the early 1960s by providing 

an alternative approach to the same problem using state space methods [2][15]. Kalman's 

contribution has been especially significant in applied work, because his solution is readily 

implemented with modem digital methods. 

4.6.1 Wiener Solution 

Consider the filtering problem of Figure 3. Let Ti(s) be the transfer function from 

input signals ( s{t) and w{t)) and the output error (el(^)). Assume iy(s) = 1. If input 

signals are white noises with unit variance then PSD of the error (3>eiei) is given by [9] 

$,.e,(5) = Ta(s)TI(5). (67) 
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least squares solution minimizes the cost function 

J2 = ̂  r (68) 
J T T  J — o o  

for minimization of J2 one method is to convert TiTJ as (representing [.] (5) with [.]) 

TiTJ = GiGi -  -  HGiGl  + HAA'H'  (69) 

where A is the spectral factor of {NN"^ + G2G5) , G2 = GC ,G\  = G.  From (69): 

T,TJ = [//A - GiGj (A')-^] [A*H* - A-^GaGj] + X: (70) 

where 

X \  —  G \ { 1  + G 2 G 2 )  (71) 

Since xi does not depend on H therefore filter which minimizes cost function J2 is 

H^eincr = [GjGJ (A')"']^ A'^ (72) 

where [u]^ is the causal part of u.  Similarly, the solution to Wiener filter for discrete time 

system of Figure 2 is given by (72) where all the transfer functions are in z domain and 

A  i s  obta ined  by  spec tra l  fac tor  o f  the  {N{z)N'{z)  + G2(2)G5(r ) )  .  

4.6.2 Kalman Filter 

Consider filtering problem in state space as 

X(n + 1) = A{n)X{n)  + Bis{n)  (73) 
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d{n)  = C2{n)X{n)  + w{n)  

i;(n) = C2{n)X{n) (74) 

where d{n)  and v{n)  are the observation and desired signal values. A(n) and C2(n) 

represent time variant state space matrix and vector respectively. The correlation values 

for input signals s{n)  and w{n)  are given by: 

q { k )  i  =  k  
E [ s { k ) s * { i ) ]  =  

E [ w { k ) w * { i ) ]  =  

0 i  k  

r { k )  i  —  k  

0 i  ̂  k  

E [s(/i:)i£;*(7)] = 0, f or al l  i  a n d  k .  

The recursive filter which estimates X{n)  as X{n)  and minimizes 

P{n) = B [(^(n) - X(n)) (A'(n) - X(7!))'] (75) 

is given by [2] (assume Xi{n) and P ^(ra) are known for n = 0) 

K{n)  = P-'(n)C2*(n) (C2(n)p-^(n)C2(ri) + 7-(n))"' 

X{n)  = Xi(n)  + Kin)  {d{n)  -  C2(ri )Xi(n))  

P(n) = (l-/(:(n)C2(n))P-Hn) 

Xi{n + 1) = A(n)Xi(n) 

P"^(n + 1) = A(n)P(n)A*(7i) + 

The above equations are called Kalman filter equations and the recursive solution of 
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Kalman filter converges to Wiener filter solution in steady state as both minimizes MSE. 

There are lot of applications in signal processing and communications where finite 

impulse response (FIR) filters are preferred over infinite impulse response (IIR) filters. 

For example applications which require real time implementation, FIR filters are preferred. 

The reason is that there are fast digital signal processing (DSP) chips which are available 

for real time implementation of the FIR filters. Also, in adaptive FIR filter applications 

stability is not an issue and therefore are preferred over IIR filters. IIR filters have 

problem with stability and hence require more computing complexity due to requirement 

of stability checks during filter coefficient update. 

This section looks into the FIR filter solutions which minimizes least squares and 

Hoo error criteria. 

4.7.1 Wiener Filter 

Consider the filtering problem of Figure 2. Assume all the transfer functions are FIR 

(ARMA model can be approximated with FIR). Observed signal d{n) is given by 

4.7 FIR Filter Solution 

Gimp * CiTnp{k)s{n -  fc)  I  +  '^mpi l )w{n -  I) (76) 
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= f 13 f II Cimp{k)s{n - m - A:)  ̂ + ( II ̂ mp(0^(" - 0 I 
\t7X=0 \jfe=0 / J \l=0 / 

Gimp, Cimp, and Ni^p are the signal, channel, and noise impulse response respectively 

and are represented as: 

Gimp = btmp(O) 9imp{.l) - gimp{Zi - 1)] (77) 

Gimp ~ [Ctmp(O) Ctmp(l) ••• ^mpiXl 1)] 

^imp — [^mp(O) '^mp(l) ••• ^)] 

Where 7-i, gi, and Zi are the lengths of channel, noise, and signal FIR models. Estimate 

of the signal is obtained by passing d(n) through a filter obtained by minimizing ei(n) 

using >\^ener or Hoo criterion and is given by 

v(72f) — Himp * d{jl^ 

(lZm=0 ( k m p { k ) s ( r i  —  0  —  T J l  —  f c ) ^  p t n i p ( w ) )  +  

(78) 

Ul-l 
= E 

The signal to be estimated is given by 

f(Ti) — Gimp * 

21-1 
— H 9imp{ p ) s { 7 l  —  p ) .  

p=0 

The error is given by 

^Hmp (o) 

/ 

(79) 

e{n)  = v{n)  — v{n)  (80) 
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ei(n) = Wimp*e{n) (81) 

Vl-l 

= ^ Wfmp(g)e(n - 9) 
9=0 

where Himp and Wimp is the impulse response of the filter H{z)  and weighting filter 

W(z) respectively and given by: 

^imp — [/^mp(0) ^mp(l) ••• ^^mpiV'l ^)] 

W'imp ~ [^imp(O) W/i7np(l) ••• ^tmp(^l 1)] 

(82) 

From (78), (79), and (80) e(n) is given by 

21-1 
Y i  9 i m p { p ) s { n  - p ) -
p=0 

(E^^o {Ek=o Cimp{k)s{n - 0 - m - /:)) gimp{o)) + 

To find H{z)  which minimizes E[e^{n)] ,  error and observation signal should satisfy [14] 

Ul-l 

E 
o=0 

himp{o)  (83) 

/ 

E [e{n)d '{n  — A:)] = 0 A: = 0,1,2, ..,ui — 1. (84) 

From (84) we can obtain ui equations with Ui unknowns (filter coefficients) [14] 

— -^<1 (85) 

where 

Rvv = 
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E [u(n)t;*(n)] E \y{n)v '{n  — 1)] 

£ •  [ t ; ( n  —  l ) v * ( n ) ]  E[v{n—l)v*{n — 1)]  

E  [t;(n)v*(n — tii — 1)] 

E \v{n — l)v*(ra — uj — 1)] 

E \u{n — U\  — l ) t ;*(ra)]  

E  [v(n)ci*(n)] 

E [v{n)d*{n — 1)] 

E [v{n)d'{n — 2)] 

Rvd = 

E [i;(n)rf*(n — Ui — 1)] 

E [t;(n — Ui — l)u*(n — Ui — 1)] 

4.7.2 Hoo Solution 

Unlike Wiener solution Hoo filter is more complex because the error surface with 

respect to filter coefficients is not smooth. This makes it difficult to estimate the gradient 

on the error surface in the direction of the minima. In case of Witner solution the error 

surface has a quadratic form and so the solution is computed in closed form. 
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First it will be shown that the error surface in case of Hoo filter solution is convex. 

Since (set of real numbers), therefore an affine function Ti(z) = 

is convex. Where Ti(2) = [G{z)  — G{z)C{z)H{z)  — H{z)N{z) \W{z)  is the transfer 

function from input signals (s(n) , w(n))  to output error (ei(n)) as in Figure 2. f f (z )  = 

iij—1 
E himp{k)z~'' . Also, function ||Ti||^ = ^?2(Ti) is convex because norm is a convex 
fc=0 

function. Therefore, the function l|Ti|l^ = ^ziHimp) is convex. 

Using convex nature any minimization techniques can be used to find minima with 

respect to the filter coefficients ([/limp(O) /limp(l) — I)])- The FIR filter so­

lutions computed in Chapter 5 have used simplex method (function FMINS of MATLAB) 

to obtain the filter which minimizes the Hoo criteria. 
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CHAPTER 5 

SIGNAL ESTIMATION 

This section discusses the signal estimation problem encountered in signal processing 

and communication applications. In many applications we are faced with the problem 

of estimating signal embedded in noise or corrupted by channel. Consider the signal 

estimation problem of Figure 3 for a continuous time system and Figure 2 for discrete 

time system. w{t), s{t),w{n), and s(n) are continuous and discrete time white noises of 

u n i t  v a r i a n c e  w h i c h  a r e  i n p u t s  t o  t h e  s y s t e m .  G ( s ) ,  C { s ) ,  N { s ) ,  a n d  G { z ) ,  C { z ) ,  N { z )  

are signal, noise, channel models for continuous and discrete time system respectively. 

H{s) or H{z) is the filter obtained by minimizing error using Hoo or minimum variance 

criterion. W(s) or W{z) is the model for weighing the error in specific frequency bands. 

The signal estimation problem is to estimate v{t) or v(n) from given corrupted signal 

d{t) or d{n) by minimizing error ei(^) or ei(n) for continuous or discrete time system 

respectively. 

5.1 Continuous Time System 

Consider an example of signal estimation problem for continuous time system. Let 
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(87) 

N(5) = /cpo ;W'(s) = l (88) 

where fcpo is a constant value and controls the power of the noise added to the observed 

s igna l  d[n) .  Frequency  magni tude  p lo t  for  s igna l  {G{s)) ,  channe l  (C(s ) ) ,  and  no i se  {N{s))  

models are shown in Figure 5. As seen from the Figure 5 signal is low pass in nature 

corrupted  by  low pass  channe l  and  addi t ive  whi te  no i se .  To  es t imate  the  s igna l  v[t )  

from observed signal, d{t) is passed through a filter H{s) obtained by minimizing ei{t) 

using Wiener solution or sub-optimal state space solution as discussed in chapter on 

mathematical solutions, fcpo = 0.1. Frequency magnitude plots of the filters obtained 

using minimum variance and Hoc criteria are shown in Figure 6. Both filters are low 

pass in nature with a notch around 10 rad/sec frequency to compensate for the channel. 

The roll off for Wiener filter is much higher than filter suggesting better rejection of 

white noise in the high frequency range. Frequency magnitude of >\^ener and filters 

for low SNR (kpo = 200) is shown in Figure 7. Both fillers have similar shape with 

the difference that Hoo filter have deeper notch to combat channel effects compared to 

•V^ener filter. This suggests that filter can recover signal corrupted by channel much 

better than AMener filter at low SNR. To see the effects of parameter 7 on sub-optimal 

//oo filter solution plots of MSE are generated for varying value of 7 for high (kpo = -1) 

and low (kpo = 200) SNR as shown in Figure 8 and Figure 9 respectively. Also, plots of 
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power spectrum density with varying value of 7 are shown in Figure 10. It is clear from 

Figures 8, 9, and 10 that as 7 is increased the //<» filter solution converges to "Wiener 

solution. MSE obtained with Hoo filter ( 7 = 10 ) converges to MSE using Wiener filter 

for both vales of ( /Jpo = -1 and fcpo = 200). This coincides v^dth the observation 

of the fact that as 7 00, i/00 solution converges to Wiener solution ( see Chapter 4 

on Mathematical Solution). Also, it is clear from the plots that at low SNR the effect 

of parameter 7 on the error variance is reduced or in other words variation of the error 

variance with respect to 7 is reduced at low SNR. From Figures 8 and 9 it is clear 

that sub-optimal filters are useful in situation where trade-off is to be made between 

performance (in minimum MSE sense) and robustness (achieving lowest upper bound on 

the MSE in the worst case). For example, from Figure 10 7 = 1.2 is a good choice for 

trade-off between performance and robustness. 

5.2 Discrete Time System 

Signal estimation problem for a discrete time system is considered with following 

transfer functions for signal and noise: 

(89) 

C{z)  = l  ;G(2)  = 1;  W{z)  = l  (90) 
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Figure 5: Frequency magnitude plot for Signal, Channel, and Noise transfer functions. 
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Figure 6: Frequency magnitude plot of filters obtained using Wiener and Hoc filter. 
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Figure 7: Frequency magnitude plot of 'VS^ener and Hoo filters at low SNR. 
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Figure 8: Plot of MSE with varying value of gamma ( 7 ) for high S N R  (  k  
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Figure 9: Plot of MSE with varying value of gamma ( 7 ) for low S N R  (  k  =  200 ). 
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Figure 10: Error spectrum plot with varying value of 7 for high 5A'/? ( k  
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where kpo is a constant and controls the SNR at the input (in dB)  defined as: 

(91) 

The signal is wide bandwidth with noise as narrow band. Idea is to reject narrow band 

interference and estimate the signal from given observed signal d[n) as shown in Figure 

2. This kind of signal and noise models are encountered in CDMA system as discussed 

in the next section. FIR filter is obtained using >\^iener and Hoo minimization criterion 

(see chapter 4 on Mathematical Solutions). Performance of filters using Wiener and 

criterion is compared by computing the SNR at the output (in dB),i.e., computing signal 

and error power ratio as follows: 

The performance benefits of Hoo and Wiener filter is shown in Figure 11. Since Wiener 

filter needs a priori knowledge of SNR therefore, SNR = — lOrfB is used to compute 

optimal filter. It is clear from the Figure 11 that filters are more robust to changes in 

input SNR. There performance degrades uniformly when input SNR is reduced away 

from —lOdB. On the other hand the Wiener filter performance degrades drastically when 

input SNR is below —lOdB. However, the performance of 'Wiener filter is superior at 

high SNR. On an average if the SNR at the input is changing over time then 

filter should give better performance in terms of output SNR as seen from Figure 11. 

E [el(n)el*(n)] 
(92) 
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To generate theoretical upper and lower bounds to the experimental curves obtained from 

Wiener and //oo solution, theoretical MSE is computed at the output as follows: 

d{n)  = {Girr^p *  Cimp *  s{n))  +  (Nirr^p *  w{n))  (93) 

where Gimp, Cimp, and Nimp are the time domain impulse response of the signal, channel, 

and noise model transfer functions. For simplicity we assume FIR models for all the 

transfer functions (as described in section 4.7.1). For the example considered above 

Cimp(O) ~ ~ 1-! and X^''^(r) = 1 ^(j^) ~ 6i(^)- Cimp(^) " Oj and dimpi^) ~ 0 

for fc 0. Assuming these values for Cimp and Gimp we can simplify (83) as 

ui-l ui-l /51-1 \  

c(ti) ®('^) ^ ' s { n  0 ) h i m p ( , 0 ^  "1"  ̂  ̂ ^^mpip^ I ^ ® 1 • (94) 
o=0 o=0 \ 1=0 J 

To compute MSE we have to find E [e{n)e '[n)] .  From (94) E[e{n)e '{n)]  is given by 

(s(n) and w{n) are zero mean and uncorrected) 

E[s(n)s*(n)] + (95) 

"E "E ^^mp{l)Kn,p{k)E [s(n -  l)s'{n -  k)] + 
fc=0 1=0 

£ E '^imp(o)/l.*„p(Tn) 
o=0 m=0 

E E ^irnpil)nlmp{p)E [w{n - 0 - l)w' (« - m - ;?)] (96) 
1=0 p=0 j 

-2 E Kmp{Q)E[s{n)s '{ j i -q]  
5=0 
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To obtain an upper bound on experimental values, filter H { z )  is computed using Wiener 

solution as discussed in chapter 4 with ui — 6 for varying value of input SNR. This 

value of H{z) is used to compute MSE from (95) for varying value of input SNR and is 

plotted in Figure 11. The lower bound is obtained from the fact that Hoc solution in time 

domain satisfies (Chapter 3) 

E  [e(n)e*(n)] < 7^ { E  [5(n)5'(n)] +  E  [•u;(ri)it;*(n)]). (97) 

From (97) and the fact that S N R  at the output is given by (92) a lower bound on 

the output SNR is plotted in Figure 11. It is seen from Figure 11 that the SNR plots 

obtained using Wiener and Hoo filters lie between theoretical upper and lower bounds. 

5.3 CDMA System 

Consider an example of code division multiple access (CDMA) system. Binary 

information is to be transmitted using binary phase shift keying through an additive noisy 

channel. Binary bits are correlated with a pseudo noise (PN) sequence before transmission 

as shown in Figure 12. Signal at the receiver is passed through the filter, and correlator. 

Output of the correlator is passed to the decision making device. When the noise is narrow 

band, then the purpose of the filter is to reduce noise level (increase SNR) at the input 

of the decision device. 
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- with Hjj,filter 
--withWiener filter 

Upper bound on Output SNR 

* Lower bound on Output SNR / 
/ '  

** * * 

y  
y  

-40 -30 -20 -10 0 10 20 30 40 
Input SNR (dB) 

Figure 11: Plot of output SNR with varying input SNR using Wiener and Hoc filters. 
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To compare the performance benefits of minimum variance and H ^o criterion, S N R  

input to the decision device is computed using Wiener and Hoo filters. Binary phase shift 

keying is used for the modulation [22] and pseudo noise sequence of length 31 is taken 

with chip to be +/ — 1. C{z) = 1. 

N { z )  =  1.08/ [l - 0.94880^-^ + .6142"^ + 0.1416^"® + 0.1291;"^ + 0.0743r'^] (98) 

Where s { n )  is a white noise of unit variance. Frequency plot of noise transfer 

function, Wiener filter, and i/oo filter is shown in Figure 13. It is clear from the plot that 

Hoo filter has a deeper notch and high attenuation compared to Wiener filter. This reflects 

the conservative behavior of Hoc criterion which is tuned to worst case noises. To see this 

e f f e c t  f u r t h e r ,  S N R  a t  t h e  i n p u t  o f  t h e  d e c i s i o n  d e v i c e  w h e n  n o  f i l t e r i n g  i s  u s e d  ( S N R i ) ,  

is plotted against SNR when Wiener filter (SNRw) and Hoc filter (SNRh) is used to 

reduce the noise effects as shown in Figure 14. Optimum filters are computed using 

SNRi=l5dB. Keeping the filters same the SNRi is varied by changing input signal and 

noise levels and SNRw and SNRh is plotted for this varying SNRi. The performance 

of the Hoo filter shows improvement of 5dB on an average over different SNRi while the 

•Wiener filter performance degrades drastically after SNRi=OdB. This again reflects the 

robust behavior of Hoc filters with superior performance when input SNR is not known 

a n d  i s  c h a n g i n g  i n  a n  r a n d o m  f a s h i o n  o v e r  a  r a n g e  o f  - 4 d B  t o  l 5 d B .  
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Binary data 
out 

Binary data in 

PN sequence PN sequence 

N(z)  

n=l 
C ( 2 )  

Filter 
H(z)  

Input SNR to 
decision device 

Figure 12: CDMA system with narrow band interference with transfer function N{z)  
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Noise transfer function 

•• Wiener filter 

— Hinf filter 

10° 

10-3 10-2 10"' 10° 10' 

Frequency (rad/sec) 

Figure 13: Frequency response of noise transfer function (N{z)) ,  Wiener, and //<» filters. 
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25 

SNRh 
SNRw 

20 -

15 -

cc 10 -

-6 -4 -2 0 2 4 6 8 10 12 14 16 

SNRi 

Figure 14; Input SNR in dB ( SNRi) versus SNR in dB obtained using Wiener and 

Hoc ( SNRw/ SNRh) filters. 
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5.4 Robust Performance 

Assume C(s) = 1 and let T(s) be the transfer function between input signals s{ t )  

and w{t) and output signal e (i) , as shown in Figure 3. Then the transfer function can 

be written as 

T = [Ti(S)-T2(s)H(s)] (99) 

where Ti(s) = [G(s) 0] and T2{s)  =  [G(5) N{s)]  .  If the input signals are white 

noises with unit variances, then the PSD of the error e (t) is given by [10] 

{ S )  =  T {S )  T ' {S )  (100) 

The Hoo optinnization criterion implies minimization of the largest singular value of the 

error PSD matrix, which can be represented as [10] 

min sup \^ee { j i^ ) \  = rmn \ \^ee  (s)|loo = l|T(5)|l^ (101) 
H{s)  u )  H(s )  H(s )  

where sup is the supremum over all ui . The optimal filter is the solution to 

mm ||T.(s) - T2(s) H(s)||„ (102) 

where H{s)  e  RHoo-

Theorem 2 Let H' be the optimal Hoo filter for (representing transfer function [.] (5) with 

[ • ] )  

T = [ G - G H  - H N ]  (103) 
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with ||T1|^ < 7 . Then for any noise tranter function with [|A^' (s)|| < pi and 

T '  =  [G-GH'  ~H'N' ]  (104) 

the error variance is bounded as 

where 

and 

sup ||e(0ll2 < 7^ 
k'||oo<pi 

Pi = 
y/i' - P 

ll^'l 

(105) 

(106) 

<5 = G - GH (107) 

Proof. 
,||2 'l|2 

= \ \G -GH'W +  <  T  

\ \Nf  <  7^  -  \ \G -  GH'  

\ G - G H  
l|A^f< • H' 

where ||[.]||^ = [-] [.]*. This means any noise tranter function satisfying 

< 
\ 

i '  -  ||G - GH > l l 2  

\H  / i i 2  

also satisfies 

' l |2  
$ee i s )  =  \ \G  -GH\ \  +  w H\\  <7 

./||2 

(108) 

(109) 

(110) 

I 
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A more relaxed bound can be represented using the infinity norm on N' satisfying 

, yjy' - IIG -

WL 

This means that for all noise transfer functions belonging to the class ||A^ ||^ < pi there 

will be an upper bound on the error variance and the error PSD. This gives robust I2 

(minimum variance) and Hoo performance where upper bound is given by 7^ . 

The following example is presented to demonstrate robust performance of an Hoo 

filter and compare it with the Wiener filter. Our approach to designing an Hoc filter is to 

use the 7 -iteration algorithm, which is based on Nehari's theorem as discussed in Chapter 

4 on Mathematical Solution. Let 

G =  Gi, E[s { t ) s* { t ) ]  =  10, E [w{ t )w ' ( t ) ]  =  1, and N{s)  = 1 . The estimated signals 

PSD using >^^ener and Hoo filters are shown in Figure 15. The constants of the design 

are found to be 7^ = 1 and pi = 0.98. It is seen from Figure 15 that the estimate of 

the signal PSD using Hoo follows closely with true spectra compared to Wiener filter. 

This is due the large bandwidth of J^oo filters [25] and so can estimate large bandwidth 

signal much better than Wiener filter. Also, the PSD of the error using two different noise 

transfer functions 

m'  = (113) 
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and 

Ni  =. —- (114) 
+ 5^ + 5^ + 5 + 1 

were obtained with the restriction of ||A''l [[^ < p i  and ||A^2 || oo < as shown in 

Figure 16. It is seen from Figure 16 that the PSD is always less than 7^ for Hoo case. 
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TO' • Tru* Signtti PSD 
Estim«t* u»>no W«m*r filter 

£«timat* ueing H 

o «/> o. 

10'  
10 io" Pr*qu*ncy (ti2) 

Figure 15: Estimated signal PSD using Weiner and filter. 
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1 0  •  

1 0  '  

N H_ filter 

-- N1' H filter v  

" N2' H filter 

10 10 
Frequency (hz) 

1 0 '  

Figure 16: Error PSD plot using three noise transfer functions. A' = l is used to compute 

Weiner and filter. 
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CHAPTER 6 

ADAPTIVE FILTERS 

This section will describe adaptive filters satisfying i/oo criteria. Adaptive filters 

are useful in estimating an unknown impulse response of a given system. The filter 

coefficients adapt to the changing impulse response and input signal non-stationarity. First 

Hoo problem is formulated in state space form and reduced to an adaptive filter problem. 

From this it is shown that well known NLMS and LMS algorithms satisfy optimal Hoo 

criteria. New class of sub-optimal algorithms are originally derived and compared 

with RLS algorithm. 

6.1 Hoo Problem Formulation 

Let us consider a state space signal and noise model for a filtering problem (single 

input output case) as follows: 

^•(ri+l) = A{n)X{n)  +  Bi {n) s {n)  ,  A'(O) (115) 

d{n)  =  C2{n)X{n)  +w{n)  

where A(n), Bi(n), and C2(n) are the time variant state space matrix and vectors de­
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scribing the system. X{n)  is the state vector. d{n)  is the observation vector. s(n), and 

w(n) are unknown quantities and correspond to input signal and noise respectively. The 

signal to be estimated is given by the linear combination ( Ci(n) ) of state vector: 

v in)  =  Ci{n)X{n) .  (116) 

We would like to find optimal estimators q/ and gp such that 

Vf {n )  =  Qf{d{0) ,d{ l ) ,d{2) , . . . ,d{n) )  (117) 

%{n)  =  ep{d(0) ,d{ l ) ,d{2) , . . . ,d{n- l ) )  

e f (n}  =  v {n) -v f (n )  •  ep {n)  =  v {n)  -  Vp(n)  (118) 

where Vf{n)  and Vp{n)  denote the estimate of v {n)  given observations from time 0 up to 

n and from time 0 up to time n — 1 respectively. e/(n) and ep(n) are filter and prediction 

errors respectively. Let T/ ( Tp ) denote the transfer operators that maps the unknown 

disturbances {X(0) — X(0), s(n),iy(n)} (X(0) denote the initial guess of X(0)) to the 

filtered (predicted) error e/(n) ( ep(n)). 

To find optimal estimators which satisfy Hoc criteria we have to find solution to the 

following; 

inf WTfWl  = 
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inf sup 
Ik/ll2,[0,n[ 

X(0),s(n)6/i2,w(n)€/i2 (-X"(0) — X(0))*no(X(0) — X(0)) + ||5l|2,[o,n] + 11^112,(0,n] 
(119) 

in/ ||T,1|^ = 

inf sup 
Il^ll2,[0,n-ll (120) 

^ X(0),5€ft2,u)6ft2 (^(0) ~ -X'(0))"no(-Xr(0) — ^(0)) + Il5||2^(0_„_i] + 11^112,[0,n-l) 

where /12 is the space of finite energy signals and IIo is a positive definite matrix that 

reflects a priori knowledge as to how close X{0) is to the initial guess X(0). 

Theorem 3 [ I IJFor  a  g iven  j  >  0  ,  i f  the  A(k )  are  nons ingular  then  an  es t imator  w i th  

ll^/lloo - 'y V, and only if, 

p-^(fc) + C2'(A:)C2(fc)-7"^Ci*(fc)C7i(A:) >0 •k  =  0 , l , . . . ,n  (121) 

where P(0) = IIq and P(fc) satisfies the Riccati recursion 

P(fc + 1) = A{k)P{k)A' {k )  +  B^{k)B\ {k ) -  (122) 

A{k)I> ' {k ) [C l [k )  C l {k ) ]  (123) 

P{k) [C; {k )  c ; {k ) ]  
-7^ 0 Ci(fc) 

< + 
0 1 _ C2(fc) 

-1 

C, ik )  

C i ik )  

P{k )A' {k )  
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Then one possible H^o filter with level 7 is given by Vf{n/n) = Ci(n)X{n/n) where 

X{k+l/k+l) = A{k)X{k/k)+Kf{k){d{k+l)-C2{k+l)A{k)X{k/k)y,X{0/0) (124) 

K f { k )  = p { k  + i )c;{k  +1) (1 + Ciik  + i)P(fc + i )c; ik  +1))-' (125) 

Theorem 4 [llJFor a given j > 0 , if the A{k) are nonsingular then an estimator with 

||Tp|l^ < 7 exists if, and only if 

p-i(A:) = p-i(fc)-7-2Cj'(A:)Ci(A:) > 0 ;fc = 0,l,...,n (126) 

where P{k) is same as in Theorem 3. One possible Hoo estimator with level 7 is given 

by Vp{n) = Ci{n)X{n) where 

X{k  + 1) = A{k)X{k)  +  Kj , {k )  (d {k )  -  C2{k)X{k) )  ; X(0) (127) 

K^ik) = A{k)P{k)C;{k) (1 + {C2{k)P{k)C; {k ) )y '  

6.2 Adaptive Hoa Filters 

This section uses Theorems 3 and 4 to derive the optimal and sub-optimal adaptive 

filters which satisfy Hoo criteria. Consider an adaptive fihering problem of Figure 17. 

A given known signal Stn('^) = [s(0) . . s { n — l )  s(n —1) ...s(n)] with only past Z sam­

ples at time n represented as 5(n) = [s(n — I) s(n — 1) ...5(n)] is passed through an un­

known system W^ig = ...lyi] and we observe the output Dout(n) = [(i(0) d(l) ... d(n)] 
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w(n) s(n) 

s (n - I )— cl(n) 

v (n )  
s(n-l) 

e (n )  

s (n )  d (n)  e (n )  

Tap update 
adaptive algorithm 

s(n-l) 

Figure 17: Example of adaptive filter problem. 
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system = [woiwi ...lyj] and we observe the output Doutin) = [d(0) d(l) ... <i(n)] 

corrupted by noise W„otse('^) = [i«(0) w{l) ... i(;(n)]. It is desired to estimate W^ig with 

W^g{n) by minimizing the output error sequence Eerr{n) = [e(0) e(l) ... e(n)] where 

v{n) = S{n)W^g,v{n) = S{n)W^g{n), and e{n) = v(n) - v{n) . Altemately, the 

problem can be formulated in the state space form as follows: 

X(A: + 1) = X{k)  • ,X{Q)=WUg (128) 

d{k)  =  S[k)X{k) -^w{k)  A: = 0,1,-,71 

v{k) = S(k)W:,,g{k) (129) 

To minimize the Hoo norm of the transfer function from inputs W^ig — VFiuip(O) and 

Wnoisei''^) to the output error (e(n)) we should find solution to the following: 

ll'^lloo ~ 2j[anj 
^ ~ (W-^,,-W-^i,(0))P(0)-HW'„,^-H^u,is(0))- + ||t:;|l2,,o,„^ 

(130) 

where v{n)  =  F{d{0)  d(l) ... d{n) )  is the optimal //<» estimation strategy and P(0) is a 

positive definite matrix that reflects a priori knowledge as to how close W-uiig is to initial 

guess Wtuiff(O) . In other words it weights the difference in the estimate at n = 0 and 

W yy wig' 

Theorem 5 From (115), (128) and Theorem 3 it can be shown that solution to (130) is 
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given by: 

P(fc + 1) = P(fc)-
P{k)S ' {k )S{k)P{k)  
(l + 5(fc)P(A:)5-(fc)) 

(131) 

1-7^ 
( -72  +  S{k)P{k)S ' {k ) )  - (1 + S{k)P{k)S ' {k ) ) - - ' {S{k) -p{k)S ' {k )Y  

where P(0) = (H and fx is a constant. 

+ = ^^'^,(A:) + P(A:-M)5'*(^- + l) (132) 

(1 + S{k  +  l )P{k  +  l )S ' {k  +  1))-' {d{k  + 1) - S{k  +  l)W^p( fc ) )  

Proof: 

from (128) and Theorem 3 A(A:) = I, Si(fc) = 0, C2{k)  = S{k) ,  and Ci{k)  = S{k) .  

Therefore, (122) reduces to: 

-72 0 S(k) 
< + 

0 1 
. . 

TM(fc) = 

P{k  + 1) = P(/c) - P(fc) [S ' {k )  5*(fc)] 

-1 ^ 

S{k)  
P (k)  [s- (k)  s - (k)]  

'  S lk)  

P(k)[S-(fc) S-((:)l 

P(k) 

f 

-7' 0 S(k) 
+ 

\ 

0 1 
. . 

- 1  

-72 + S(k)P(k)S'(k) S(k)P(k)S'(k) 

S(k)P(k)S'(k) l + S(k)P(k)S'(k) 

-1 

(133) 
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= (lAe(A:)) 
l  +  S{k)P{k)S ' {k )  -S{k)P{k)S ' {k )  

-S ik )P{k)S ' {k )  - j "  +  S{k)P{k)S \k )  

where te( A : )  =  ( — 7 ^ +  S{k)  P ( f c )  5 * ( A : ) ) ( 1 +  S{k)  P{k)  S*{k)  

1 + S{k)P '{k )S ' {k )  -S{k)P '{k )S ' i k )  
=  { l / t e{k ) )  

Therefore, 

P{k)[S ' {k )  S ' {k )]TM{k)  

S{k)P-{k)S ' {k )  -7^  +  S{k)P '{k )S ' {k )  

- (S (k )  P(k)  S ' (k )y  

S ik )  
P{k)  

S{k)  

=  P{k)[S ' i k )  S ' {k )]{ l / t e{k ) )  

S{k)P{k)  +  S{k)P '{k )S ' {k )S{k)P{k)  -  S{k)P '{k )S*{k)S{k)P{k)  

-S{k)P '{k )S ' {k )S{k)P{k)  -  'Y^S{k)P{k)  +  S{k)P '{k )S ' {k )S{k)P{k)  

P{k)  
[ S ' {k )S{k)  +  S '{k )  S{k)  P ' {k )  S ' i k )  S{k)  -

te{k)  

S ' {k )  S{k)  P ' {k )  S ' {k )  S{k)  -

S'{k )  S ik )  P ' ik )  S ' i k )  S ik )  -  S ' ik )YSik )  +  

S ' ik )  S ik )  P ' ik )  S ' i k )  S ik )]  P(fc) 

S ' ik ) [ l  +  S ik )  P ' ik )  S ' i k )  -  Sik)  P ' ik )  S ' i k )  -  Sik)  P ' ik )  
te[K)  

S ' i k )  -  7^  +  Sik )  P ' ik )  S ' i k ) ]  S ik )  P(fc) 

Pik)S ' i k )S ik )Pik )  2  P ik )S ' i k )S ik )Pik )  
t e ik )  ^ ^  "  ( 1  +  Sik )Pik )S ' i k ) )  

(134) 
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1-7^ 
(_^2  +  S{k )P{k )S ' {k ) )  - (1 + S{k )P{k )S ' (k ) ) - - ' {S {k )P{k )S ' {k ) ) \  

From (134) and (133) 

pffc  +  i )  =  r(M ^(k)S ' {k )S{k )P ik )  

1-7'  
( -72  +  S{k )P{k )S - {k ) )  - (1 + S{k )P{k )S ' {k ) ) - - ' {S {k )P{k )S ' {k ) ) \  

From (135) following interpretations can be drawn: 

* 7 = 1 =» P{k  +1) = Pik )  =  f j t l ,  (P(0) = f i l )  and the recursive form of W ^ig(k  +1) 

in (132) collapses to update form similar to NLMS: 

W^(J;+l) = w;̂ (k)+ ̂  slf+ '̂̂ s\k + 1) ~ <136) 

* 7 —> 00 P(k+1) = P(k)—and the recursive form of 1) 

in (132) collapses exactly to update form of RLS [14]: 

+1)  = iv^Ak) + Kfc +1)  -  S«= +  Divrjl:)]  

(137) 

* 1 < 7 < 00 recursive form of W„ip(A: + 1) in (132) satisfy sub-optimal //«, criteria 
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and fall into new category of adaptive algorithms which we call it sub-optimal NLMS 

adaptive algorithms. 

* From (115), (128), Theorem 4, 7 = 1, and e(n) = u(n) — v {n)  it can be shown that 

recursion W^ig{k + 1) (represented as X{k + 1) in Theorem 4) collapses exactly to 

update equation of LMS [11]: 

+ 1) = ["'('=) - (138) 

Also, in case of LMS when 1 < 7 < co recursive form of Wwig{k +1) in (138) satisfy 

sub-optimal Hoo criteria and fall into new category of adaptive algorithms which we 

caU it sub-optimal LMS adaptive algorithms. 

It is shown in [11] that 7 = 1 is the optimal H^o solution to both filtering and 

estimation problem of (130). From above interpretations it is clear that both NLMS and 

LMS are optimal Hoc solution to adaptive filtering problem of (128) and RLS is a special 

case of NLMS when y —* 00. This implies that there is no upper bound guaranteed for 

RLS or the Hx, bound is quite large suggesting poor robust properties with respect to 

inputs,i.e., noise and unknown weights. On the other hand LMS and NLMS have a finite 

Hoo norm equal to one. This guarantees that the energy of mean square error in LMS 

and NLMS cannot exceed the energy of inputs suggesting superior robustness properties 

of these algorithms with respect to tap weights and input noise. 
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Now we connect the above state space solution to the RLS solution [14] to study the 

similarities and dissimilarities in the above adaptive algorithms. We do this by simplifying 

P(A:) further. From (133) and using inversion lemma: 

—7^/ 0 

0 / 

S{k )  

S {k )  

p-i(fc + l) = p-^{k )  +  [S ' {k )  5*(fc)] 

= p- \k )+ {1-^ -^ )3 ' {k )S{k)  

= fi-'l + (1 - 7"') E S '{k )S{k)  ; P(0) = /.I (139) 
*:=0 

for LMS the P(fc) from equation (126) and (139) is given by 

P-I(fc) = fx- ' l  + (1 - 7"') E 5-(j)5(j) - r^S'{k)S{k) ; P(0) = (Ml .  (140) 
j=0 

The update equation can be made the same for all the algorithms by just varying P'(A:) 

as follows: 

P'(A:)5'(fc + l) 
+1)  = w'v.(fc)  +  

l  +  S(k  +  l )P ' {k )S-{k+l )  
[<i(l: + l)-S(<: + l)WV,(S:)]. 

(141) 

Where, P'(A:) = P{k)  and 7 = 1 for NLMS, P'{k)  = P(fc) and 7 = 00 for RLS. Since 

LMS is a prediction filter therefore, (141) is modified as: 

+1) = wr^(k) + • (142) 

In (142) if P ' { k )  =  P { k )  and 7 = 1 it becomes a LMS update equation. P'(fc) = P(A:) in 

(141) for RLS is the correlation matrix of input data with added small This is same 
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as the correlation matrix equation obtained in [14] by minimizing mean squared error. It 

is interesting to observe that for NLMS the P'(^) in (141) is always a constant while in 

(142) for LMS it is dependent on instantaneous value of autocorrelation estimate from 

single observation. The positive definite criteria for P{k) puts a restriction on value of /j, 

which from (140) is given by 

^ s {k ) s* {ky  

Role of fi~^ is very well established for RLS and acts as the noise added to the 

autocorrelation estimate [14]. Larger the value of fx smaller is the noise and better is the 

estimate making RLS converge fast but less stable due to singularity of correlation matrix. 

It is interesting to see that same role is played by fj, in NLMS (optimal and sub-optimal) 

a n d  L M S  ( o p t i m a l  a n d  s u b - o p t i m a l ) .  I t  a c t s  a s  n o i s e  t o  t h e  c o r r e l a t i o n  e s t i m a t e  o f  P'{k) .  

Therefore, large value of fi should give faster convergence as is the case observed for 

both LMS and NLMS [14]. The slow convergence rate of LMS and NLMS compared to 

RLS is because they try to minimize an upper bound on the MSE at every point in time. 

On the other hand RLS try to minimize MSE and hence converge faster to minimum 

MSE compared to LMS and NLMS. Also, it is interesting to see that from (139) we can 

make RLS have finite upper bound on error variance,i.e., upper bound on Hoo norm by 

weighting the correlation matrix with (1 —7"^). Therefore, sub-optimal NLMS algorithms 

should have better robustness properties (finite upper bound on the error variance) and 



www.manaraa.com

86 

performance (fast convergence) close to RLS. Robusmess is related to the stability of the 

algorithm and better (minimum MSE) estimate of unknown weights in presence of added 

noise and noise due to finite precision effects. This will allow us to trade off robustness 

with performance. We have found in our simulations that 7 « 2 produces convergence 

rate similar to RLS and is more stable compared to RLS.. 

The convergence characteristics of the LMS, NLMS, and RLS algorithms is very well 

understood [14]. However, from the above analysis it is much clear now that LMS and 

NLMS should be more robust with respect to input noise variations compared to RLS. 

This is because LMS and NLMS are solution to optimal Hoo minimization and have upper 

bound on the error variance while RLS does not guarantee any such bounds. First, we 

show that the upper bound achieved by LMS is one while for RLS it is greater than one. 

Consider the adaptive problem as follows: 

6.3 Simulation Results 

X{k  +  1)  =  X{k)  ;A'(0) = (144) 

d{k)  =  S{k)X '{k )  +  w{k)  k  =  0 , l . - ,n  

(145) 

Computing the matrix which maps inputs (w{k),fi^ — l^u,i3(A:) j) to the output eiror 
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(ezms(fc)) using LMS equation (138): 

W^{k)  = -  WuHg{k)  = Wt^g-

[W^,,{k - 1) + /z {d{k) - Sik)Wr^ik - 1)) S{k) ]  

= W^g{k - 1) - M dik)S{k) + iJ,Sik)Wr^(k - l)Sik) 

=  W ^ig{ k  - l ) - f x  S i k ) W Z i g { k ) S { k )  -  f j . w { k ) S { k )  +  / x 5 ( f c ) W ^ ^ , ( A :  -  l ) S { k )  

= W^{k - 1) - f j iS {k )W^ig ik  -  l )S{k )  -  fxw{k)S ik )  

W^g{ l )  =  W^ig iO)  -  ixS{ l )WZig{0 )S{ l )  -  IJ-W{1)S{1 )  

W^g{2)  =  W^gi l )  -  f iS i2)Wr^{ l )S{2)  -  fxw{2)S{2)  

= (w^giO)  -  /^Si l )Wr^iO)S{ l )  -  ,xv j i l )S i l ) )  -  f^Si2 )  

(W^g{0 )  - /x5(l)Wv^(0)5(l) - tMwi l )S{ l ) )  5(2) - f ,w i2 )S{2 )  

The equation becomes very messy with Z > 2 so we analyze the matrix for Z = 1 case. 

Since Z = 1 is a scalar case therefore, w^ig = Wwig € and s  (n) = S(n). 

Wrvig{2)  = Wmig{0)  -  /us2( l ) i i i ;^ i ( , (0 )  -  iJ .s'^{2)w^ig{Q)  + / i2s^(2 ) s^( l )Tx; ,„ ip (0 ) -

/iw(l)s(l) — /f^s^(2)s(l)u;(l) — f j ,w{2 ) s (2 )  

for fc = n and s {k )  =  ±1 

Wyng{n) = (1 -)Li)''t(;^p(0) -/i(l -/i)"~^s(l)^^;(l)-

/Li (1 — /i)"~^ s{2)w{2) . . .  — f j , s {n)w{n)  

®iTlls(^) ~ Wyiig(Tl^S(Tl^ 

If we observe n points of data than the transfer matrix which maps inputs 



www.manaraa.com

88 

(w{k),fjiiiv,j^g{k)) to output error eims{k) is given as: 

0 0 

—fjL 0 

f jL{ l  — fx )  s(2)s(3) 0 

(1 - /i) s(l) 

jj,2 (1 - At)^ s(2) 

fii (1 - fxf 5(3) 

- / / ( l - / i )s( l )s(2)  

-IX (1 - fxf s(l)s(3) 

/i2 (1 —/Li)" s(ra) —/i(l —/i)" ^ s(l)s(n — 1) —/i(l—/x)" ^s(2)s(n —1) —fx 

(146) 

similarly we can obtain transfer matrix from RLS update equations (^ = 1 , s {k )  = ±1 ). 

From (137)  (p[k )  =  V{k) )  

Wwig{k  + 1) = W^g{k)  4- i+s(A+])pfjt'^s(fc+i) + 1) - •s(fc + l ) 'Wwig{^ i ) ]  

= +1) -  Wl 

v (k  4-1') = v ( t )  p(fc) /. N _ p '^(k ) s^(k )  p (k )  2(0} 
p \^ f i  - r  1) p \^Kj  p{ l c ) s (k )  H-p{A:)s2(fc) l+p(fc) l+(fc+l)p(0) 

Wwig{f^ + 1) = Wwigi^) + p(k + l)s('c + 1) [d(fe + 1) " s {k  +  l } id^^ig (k ) ]  

"^wigi^k) — '^'wig '^*u;tp(^) ~ "^wig "iJ^wigi^k 1) p(Jc)s(^k) 

[ s {k )Wwig{k )  +w{k)  -  s{k )w^g{k  -  1)] 

= Wwig(k - 1) - p{k)w^ig - p(k ) s {k )w(k)  + p{k)w^ig{k  -  1) 
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=  i S u n g { k - l ) - p { k ) w ^ig{ k - l ) - p { k) s { k) w { k )  =  { I  -  p { k) ) w ^g{ k - l ) - p { k) s { k) w { k )  

= - 1) -  T ^ ) ^ i k ) w { k )  

WyHgi l )  =  {T^)wvng iO)  -

= ((1+^(0)) "" (l+2p(0))®(^)"'(^) 

~ ((i+2p(0)) ((i+p(0))^'"p(®) " ~ (l+2p(0))®(2)^(2) 

W.ung{n) = i+nP(0)^^5(®) ~ l+np(0)®(^)^(^) " l+np(0)'®(^)^(^)'" ~ l+np(0) 

e r i s i n )  = W u ,ig( n ) s { n )  =  

-TS(0)^(2)s(n)y;(2)... - j^^win) 

Therefore, the transfer matrix for RLS which maps inputs (w{k),fi2w^g{k)) to the 

output error Crisik) is given by: 

^ l+p(0) 

/X2 ^(2) 
l+2p(0) 

a l  ^(3) 
^ I+3p(0) 

.A 
1+P(0) 

Ss®(l)^(2) l+2p(0) 
P(°) 

l+2p(0) 

1:^^(2)^(3) 

. 1+V(0) l+np(0)^(^)^("') l+np(0)^(^)^("') 

0 

0 

0 

0 

0 

0 

p(0) 
H-np(O) 

(147) 
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Maximum singular values of the transfer matrix for LMS and RLS are plotted in 

Figure 18, Figure 19, and Figure 20. From (143) value of fx permissible is close to one. 

Therefore, n = .95 and p(0) = 10, ICQ. It is seen that maximum singular values for LMS 

does not exceed one while RLS is greater than one. This is expected as LMS is guaranteed 

to be always below one as it satisfies ffoo criteria (with upper bound on singular value of 

one) while RLS has no such upper bound. It is interesting to observe that upper bound on 

the maximum singular value increases with increase in p(0) as shown in Figure 19 and 

Figure 20 for p(0) = 10 and p(0) = ICQ respectively. This means that with increase in 

p(0) upper bound on the maximum singular value is increased making RLS less robust. In 

[14] it is shown that ^ is the noise added to the correlation matrix. Therefore, increasing 

the noise level makes RLS more robust which agrees with the result of [14]. 

For performance comparison of sub-optimal algorithms with RLS following simula­

tion parameters were chosen: 

1 = 15, Wi = i;i = l,2,...,15, SNR = 30dB, P(0) = lOOL (148) 

Input 5(n) is a colored signal obtained by passing unit variance gaussian distributed 

white noise through a second order autoregressive (AR) process with transfer function 

ff(z) = i-i.42-l+.85r=7 • Noise IVnoise(n) is white gaussian and 7 = 2 for sub-optimal 

NLMS. P(0) value is kept same for NLMS, sub-optimal NLMS, and RLS. It is observed 

that with 7 « 2 the MSE convergence rate of RLS and sub-optimal NLMS is almost same 
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observation time (N) 

Figure 18: Maximum singular value plot of LMS equation transfer matrix {ji 
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Figure 19: Maximum singular value plot of RLS equation transfer matrix (p{0)  
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Figure 20: Maximum singular value plot of RLS equation transfer matrix ( p(0) = 100). 
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as shown in Figure 21. It is clear from the convergence plots that sub-optimal NLMS 

have less variance in the MSE compared to RLS. The convergence rate of NLMS (7 = 1) 

is shown in Figure 22 and is inferior compared to RLS and sub-optimal NLMS. 

6.4 Acoustic Echo Canceller 

Acoustic echo produced in a teleconferencing system degrades the quality of voice 

and in some cases make it impossible to achieve reliable communication. The echo is 

produced due to acoustical coupling between speaker and microphone. Figure 23 shows 

a typical teleconferencing system. Speech s(n) from far end speaker is passed through a 

loud speaker (LS). Some part of s(n) is picked up by microphone (MIC) due to acoustic 

echo path between LS and MIC. Therefore, the outgoing speech d(n) not only contain 

near end speech p{n) and added noise w{n) but also has portion of s{n) passed through 

an acoustical echo path. d{n) can be represented as: 

d i n )  =  W ^ig{ n ) S { n )  + p(n) -I- w { n )  (149) 

where W^ig{n) = (n) ...lUi(n)] is the FIR filter model for the acoustical echo path 

at time n  and 5(n) = [ s { n  —  I )  s ( n  —  1) ...s(n)]\ In order to have reliable communication 

a portion of d(n) represented by W.ung{n)S{n) should be removed from d{n) before it is 

delivered to the far end speaker. This can be achieved by Acoustic Echo Canceller (ABC). 



www.manaraa.com

95 

160 

- sub-optimal NLMS 

RLS 
140 

120 

® 100 

o> 

UJ 60 

100 150 
Iterations/time 

200 250 

Figure 21: Convergence plots of MSE using RLS and suboptimal NLMS. 
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Figure 22: Convergence plot of MSE using NLMS. 



www.manaraa.com

97 

Near end speaker 

® p(n) 

MIC 
Acoustic 
impulse 
response 
W. wig S LS 

d(n) 

Filter 

Far end speech s(n) 

Figure 23: Echo produced in a teleconferencing system. AEC is used to cancel echo 

produced due to acoustic coupling between MIC and speaker. 
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The task of AEC is to estimate W^g{n)  from input signal s{n)  and observed signal d{n)  

as shown in Figure 23. 

Adaptive filters (LMS, NLMS, RLS) are widely used as AEC [8][14]. The two 

desirable properties of an adaptive filter for AEC are fast convergence (performance) and 

good stability (robusmess). As discussed in section 6.2 LMS and NLMS satisfy H^o 

criteria and therefore, have slow convergence but good stability. On the other hand RLS 

which satisfy minimum variance criteria have fast convergence but poor stability. Also, 

sub-optimal NLMS can be used to trade off convergence with stability. 

Performance of AEC is evaluated with respect to adaptive algorithms satisfying 

and minimum variance criteria. Far end speech s(n) is passed through a 256 tap FIR filter 

model of an acoustical impulse response. This impulse response is obtained by passing 

white noise through a room and observing the output signal. Far end speech is obtained 

by passing an analog speech through analog-to-digital (A/D) converter with 16 bits of 

resolution and Skhz sampling rate. d{n) is obtained by passing s{n) through acoustical 

impulse  response  and adding white  noise  w{n)  to  i t ,  i . e . ,  din)  =  W^igS{n)  +  w{n) .  

Adaptive algorithms are used as AEC to estimate the unknown impulse response W^ig 

as W^g with I = 256. Most of the applications require real time implementation of 

RLS and NLMS. ffigh speed DSP's are low cost solution for real time implementation 

of AEC. Using DSP's it is possible to implement NLMS in real time. However, due to 
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high computational requirement (order l^) of RLS it cannot be implemented in real time 

on DSP's. There are many algorithms present which reduces the computation complexity 

of RLS to order 21 [8][18]. In our simulations Affine Projection Algorithm (APA) is been 

k 
used [8]. For RLS P(0) = .01 eng{s{n)) ,  where eng{s{n))  = 12 s{n)s'{n) is the energy 

n=0 

estimate of the input speech signal based on the window of size k = 40,000. Convergence 

plots of MSE is obtained by taking ensemble average over 10 different speech signals. 

Figure 24 shows the convergence rate of MSE using RLS, NLMS, and sub-optimal NLMS 

(7 = 2) operating with SNR = 30 dB. The inferior convergence rate of NLMS compared 

to RLS is reflected in Figure 24. This reflects the inferior performance of NLMS compared 

to RLS under high SNR condition. RLS showed some unstable behavior after 15000 

iterations as shown in Figure 25. This shows the poor stability property of RLS compared 

to NLMS. Sub-optimal NLMS has a faster convergence than NLMS and a better stability 

than RLS as seen in Figure 24 and 25. This observation is in accordance with the theory 

discussed in Section 6.2. Figure 26 shows the convergence plots for RLS, NLMS, and 

sub-optimal NLMS under low SNR condition ( SNR = OdB). Convergence rates for 

a l l  t h e  t h r e e  a l g o r i t h m s  u n d e r  l o w  S N R  a r e  s i m i l a r  t o  t h e  o n e s  o b s e r v e d  f o r  h i g h  S N R  

case. However, the steady state MSE achieved is increased under low SNR case for all 

the three algorithms. 

From the simulation results on AEC it is clear that NLMS show poor convergence and 
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performance compared to RLS under high S N R  condition. From stability (robustness) 

point of view NLMS is better then RLS. Sub-optimal NLMS is a trade off between stability 

and convergence rate. It is seen to have better stability than RLS and better convergence 

rate than NLMS. 
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Figure 24: Convergence plots of MSE using RLS, NLMS, and sub-optimal NLMS 

algorithm. SNR=20dB . 
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Figure 25; Convergence plots of MSE using RLS, NLMS, and sub-optimal NLMS. RLS 

shows unstable behavior after 15000 iterations. SNR=30dB. 
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Figure 26; Convergence plots of MSE using RLS, NLMS, and sub-optimal NLMS 

algorithm. SNR=OdB. 
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CHAPTER 7 

CONCLUSION 

Filters based on Hoo criteria are useful in situations when input signals are not known 

completely. In situations where error is to be minimized in specific frequency bands then 

Hoo filters are more suitable compared to minimum variance (minimizes MSE) filters. 

Hgo filters provide more robust performance than minimum variance filters when the 

underlying statistics of the input signals are not known a priori. However, minimum 

variance filters have better performance compared to filters when complete knowledge 

of input signal statistics is known. 

It is shown that for a general filtering problem of Figure 2 that Hoo criteria for 

stochastic input signals can be represented in time and frequency domain as: 

where I(n) — [s(n) w(n)],Ti{z} = W{z)[G{2) — G{z)C{z)H(z) —H{z)N{z)], 

and L  is the time domain operator which maps input WSS signal l { n )  to output er­

ror ei(n) and = E[X(n)X'{n)] . From this it is clear that the H^c filters 

provide an upper bound to the error variance for input signals with second order station-

arity. Error variance is guaranteed to be below 7^ times power of the input signals no 

matter what specific set of input signals are present In other words H^ filters try to 

2 
2 

2 
2 = l|Ti(^)llL = 7j,t<7' (150) 



www.manaraa.com

105 

minimize maximum upper bound on the error variance as opposed to minimum variance 

filters which tries to achieve minimum MSE. Therefore, performance of Hoo should be 

more robust compared to minimum variance filters when input signals are not known 

a priori. Also, when input noises are white then using proper weighting functions the 

error in desired frequency band can be minimized more efficiently compared to minimum 

variance filters. 

For continuous time filtering problem it is experimentally observed that as 7 —> cso 

Hoo filters satisfy minimum variance criteria. This is in accordance with theoretical 

results. This suggests that 7 can be adjusted to trade off robusmess with performance. It 

is observed that at very low SNR the variation in the error variance with respect to 7 is 

reduced . 

For discrete time system it is concluded that if S N R  is unknown and is varying 

with time then the performance of Hoo filter is much better than Weiner filter. The 

degradation in performance when SNR is reduced below OdB is steady for Hoo filter but 

drops drastically for Wiener filter. On an average Hoo filter show superior performance 

compared to Wiener filter when input SNR is time varying. 

It is shown that well known LMS and NLMS algorithm satisfy Hoo criteria as opposed 

to RLS which satisfies minimum variance criteria. Therefore, LMS and NLMS should 

be more robust with respect to the input signals and the update error in filter coefficients 
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compared to RLS. It is shown that for one dimensional system the gain matrix of LMS 

and NLMS has an upper bound of one while no upper bound is guaranteed for RLS. The 

superior robustness of LMS and NLMS with respect to input noise and noise due to finite 

precision effects compared to RLS is been reported by many researchers [8][14][18]. 

It is been reported in [14] that minimum error achieved by LMS and NLMS is much 

higher than RLS when SNR is high. This fact is confirmed by our observation on better 

performance of Wiener filter compared to Hoo when SNR is high. Simulation results 

on AEC show that NLMS has slower convergence rate (performance) compared to RLS 

but better stability (robustness) compared to RLS. It is shown that when 7 —> oo NLMS 

converges to RLS solution and therefore 7 value can be set to trade off robustness with 

performance. The simulation results on AEC have shown that sub-optimal NLMS have 

better stability than RLS and better convergence rate than NLMS and therefore is useful 

in situation where trade off between robustness and performance is desired. 
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CHAPTER 8 

FUTURE WORK 

This thesis has looked into the advantages of Hoo filters when input signal statistics in 

not known completely. There are applications where we are faced with problems of model 

uncertainties,i.e., models describing channel, signal, or noise have some uncertainties 

associated with them as shown in the Figure 27. These uncenainties can be modelled 

with an H^o upper bound as: 

1|AI(Z)IU<7I ; |1A2(Z)IU < 72 ; 1|A3(2)||^ < 73 (151) 

One of the solutions to handle uncertainties is to find a filter which minimizes the following 

cost function: 

sup sup sup 11X1(2)11^=72 (152) 
liA'5l|„<7'5 ||/(n)||25£ 0 ||-'(7l)li2 i|A's||„<7'i 

where A's = Ai, A2, or A3 and 7-'s = 71,72, or 73 . Other quantities Ti,/(ra),ei(n), 

and 11-112 have there usual meaning as in Chapter 3. 

Filter obtained by minimizing (152) will be robust to both input signal and model 

uncertainties and therefore should provide better performance in situations where uncer­

tainties can be modelled. 



www.manaraa.com

108 

h(/2) 

N(z) 

m) 
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Figure 27; Filtering problem of Figure 2 with uncertainities. 
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APPENDIX A 

The Basic LQ Pfoblem: Let A, B, Q, F, R be given matrices of sizes n x n. 

n X m, n X n, n X m, and m x m respectively, such that Q = Q* and R = R* . Let 

and 

o { X ,  U )  =  X ' Q X  +  2 R e  { X ' F U )  +  U ' R U .  (153) 

The following problem will be called the basic linear quadratic optimization problem 

(basic LQ problem); 

given A Q € C", find functional X [ t )  and U { t ) ,  defined for t > 0, such that 

X \ t )  =  A X { t )  +  BC/(t). X(0) = A o  (154) 

}  d t < o o  (155) 

and the value of the integral 

$(A'(.),f/(.)) = r  a  { X { t ) M t ) ) d t  (156) 
Jo 

is minimal. 

The Kalman-Yakubovich Lemma: The following conditions are equivalent 

(i) For any AQ e there exists a unique pair of functional {X{.),U{.)) which mini­

mizes functional (156) under the constraints (154), and (155); 
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(ii) The pair (A, B) is stabilizable, and there exists e > 0 such that 

c { X , U ) > € { \ X f  +  \ U f )  (157) 

for any X  e  C ^ , U  such that 

j u j X  = AX + B U  ; (158) 

(iii) The pair (A, B) is stabilizable, and there exists n x n matrix Po = PJ such that 

(159) 
Q F 

+ 
PqA + A*Po PoB 

>0 

F* R B'Po 0 

(iv) R > 0, and there exist n x n matrix P = P* which is a stabilizing solution of the 

riccati equation 

Q + PA + A*P = (PB + F)R-MPB + F)*, (160) 

and the matrix A = A — BR~^ (PB + F)* is a Hurwitz matrix ; 

(v) R > 0, and there exists n x n  matrix P = P* and a . m x n  matrix K such that 

a { X , U )  +  2 R e { X ' P { A X  +  B U ) }  =  { U - K X y R { U - K X )  (161) 

for any X e C^,!! E and A + BK is Hurwitz matrix; 

(vi) R > 0, the pair (A, B) is stabilizable, and the 2n x 2n Hamiltonian matrix 

A-BR-^F* BR-^B* 

Q — FR'^F* —A*+FR~^B* 

H = (162) 
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does not have eigenvalues on the imaginary axis ; 

(vii) The minimal of functional (156) under conditions (154), (155) is equal to -45PA), 

and the optimal pair {X, U) is defined by (154) and by 

U { t )  =  K X { t ) ,  

X { t )  =  U { t )  =  K e ^ ' A o  ;  

(163) 

(vii) P > Po for any Pq such that 

Q F PoA + A*Po PoB Q F 
+ > 0. (164) 

F- R B-Po 0 
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APPENDIX B 

Krein Space 

An abstract vector space {«,(•,•)«} that satisfies the following requirements is 

called a Krein Space: 

(i) K is a linear space over C, the complex numbers. 

(ii) There exists a bilinear form (., .)^ on K such that 

(a)(y,A'>, = (xy): 

(b) { a X  +  b Y ,  Z ) ^  =  a  (A', Z ) ^  +  b  { Y ,  Z ) ^  

for any X , Y , Z  £  K,  a , b  e  C .  

(iii) The vector space k admits a direct orthogonal sum decomposition 

K — -j- (165) 

such that {K+,{.,.)^} and are Hilbert spaces, and {X,Y)^ = 0 for any 

X G K+ and Y G . 

In view of the above, a vector X  E  K can be positive ( { X , X ) ^  > 0), neutral 

(,{X,X)^ = 0) or negative {{X,X)^ < 0). Correspondingly, a subspace L C K can be 

positive, neutral, or negative. 
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